Thermoplastic Polymers with Nanosilver Addition—Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Manufacturing
2.2. Material Evaluation
2.2.1. Scanning Electron Microscopy
2.2.2. Roughness
2.2.3. Surface Wettability
2.2.4. Mechanical Test
2.2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, S.P.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Kim, Y.J.; Yoon, T.L.; Park, S.A.; Cho, I.H.; Kim, E.J.; Kim, I.A.; Shin, J.W. The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials 2004, 25, 5715–5723. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Chauhan, M.; Vaish, A. Bone cement. J. Clin. Orthop. Trauma 2013, 4, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuma, F.A. The Optical Constants of Poly Methyl Methacrylate PMMA Polymer Doped by Alizarin Red Dye. Am. Int. J. Res. Form. Appl. Nat. Sci. 2016, 16, 13–18. [Google Scholar]
- Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Gopalakrishna, K.; Vivek, C.S. Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. J. Mater. Sci. 2016, 51, 3657–3674. [Google Scholar] [CrossRef]
- Reggio, D.; Saviello, D.; Lazzari, M.; Iacopino, D. Characterization of contemporary and historical acrylonitrile butadiene styrene (ABS)-based objects: Pilot study for handheld Raman analysis in collections. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118733. [Google Scholar] [CrossRef]
- Elix Polymers Brochure High Performance ABS Products for Medical Applications. Available online: www.elix-polymers.com (accessed on 4 August 2016).
- Morda, K.; Dobrakowski, K.; Kwiatkowski, D. Effect of Selected Injection Conditions on the Mechanical Properties and Structure of HDPE. Fibres Text. East. Eur. 2018, 26, 93–98. [Google Scholar] [CrossRef]
- Osorio, M.; Cañas, A.; Puerta, J.; Díaz, L.; Naranjo, T.; Ortiz, I.; Castro, C. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants. Sci. Rep. 2019, 9, 10553. [Google Scholar] [CrossRef] [Green Version]
- Jeyachandran, P.; Bontha, S.; Bodhak, S.; Balla, V.K.; Kundu, B.; Doddamani, M. Mechanical behaviour of additively manufactured bioactive glass/high density polyethylene composites. J. Mech. Behav. Biomed. Mater. 2020, 108, 103830. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.; Garzon-Hernandez, S.; Arias, A. A new constitutive model for polymeric matrices: Application to biomedical materials. Compos. Part B Eng. 2018, 139, 117–129. [Google Scholar] [CrossRef]
- Badgayan, N.D.; Sahu, S.K.; Samanta, S.; Sreekanth, P.S.R. Evaluation of Dynamic Mechanical and Thermal Behaviorof HDPE Reinforced with MWCNT/h-BNNP: An Attemptto Find Possible Substitute for a Metallic Kneein Transfemoral Prosthesis. Int. J. Thermophys. 2019, 40, 93. [Google Scholar] [CrossRef]
- Liu, T.; Huang, K.; Li, L.; Gu, Z.; Liu, X.; Peng, X.; Kuang, T. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol. 2019, 175, 100–110. [Google Scholar] [CrossRef]
- Fang, C.H.; Lin, Y.W.; Sun, J.S.; Lin, F.H. The chitosan/tri-calcium phosphate bio-composite bone cement promotes better osteo-integration: An in vitro and in vivo study. J. Orthop. Surg. Res. 2019, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Liebscher, M.; Tzounis, L. Mechanical Properties of 3D-Printed Acrylonitrile–Butadiene–Styrene TiO2 and ATO Nanocomposites. Polymers 2020, 12, 1589. [Google Scholar] [CrossRef]
- Taghinejad, S.F.; Behrouzi, M.; Asiaban, S. Investigation of the rheological behavior of titanium dioxide pigmented acrylonitrile-butadiene-styrene polymer. J. Appl. Polym. Sci. 2011, 124, 2016–2021. [Google Scholar] [CrossRef]
- Wang, M.; Hench, L.L.; Bonfield, W. Bioglass/high density polyethylene composite for soft tissue applications: Preparation and evaluation. J. Biomed. Mater. Res. 1998, 42, 577–586. [Google Scholar] [CrossRef]
- Jeziórska, R.; Zielecka, M.; Gutarowska, B.; Żakowska, Z. High-Density Polyethylene Composites Filled with Nanosilica Containing Immobilized Nanosilver or Nanocopper: Thermal, Mechanical, and Bactericidal Properties and Morphology and Interphase. Int. J. Polym. Sci. 2014, 2014, 183724. [Google Scholar] [CrossRef]
- Hassler, C.; Boretius, T.; Stieglitz, T. Polymers for neural implants. J. Polym. Sci. Part B Polym. Phys. 2010, 49, 18–33. [Google Scholar] [CrossRef]
- Ziąbka, M.; Dziadek, M.; Królicka, A. Biological and Physicochemical Assessment of Middle Ear Prosthesis. Polymers 2019, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Biological Evaluation of Medical Devices—Part 13: Identification and Quantification of Degradation Products from Polymeric Medical Devices; ISO 10993-13:2010; International Organization for Standardization: Geneva, Switzerland, 2010.
- Plastics—Determination of Tensile Properties—Part 1: General Principles; PN-EN. ISO 527-1:2012; International Organization for Standardization: Geneva, Switzerland, 2012.
- Grigoriadou, I.; Pavlidou, E.; Paraskevopoulos, K.M.; Terzopoulou, Z.; Bikiaris, D.N. Comparative study of the photochemical stability of HDPE/Ag composites. Polym. Degrad. Stab. 2018, 153, 23–36. [Google Scholar] [CrossRef]
- Ziąbka, M.; Dziadek, M.; Menaszek, E.; Banasiuk, R.; Królicka, A. Middle ear prosthesis with bactericidal efficacy—In Vitro investigation. Molecules 2017, 22, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziąbka, M.; Menaszek, E.; Tarasiuk, J.; Wroński, S. Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology—In Vivo Evaluation. Nanomaterials 2018, 8, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin-Jian, S.; Guoqin, L. Morphology and Thermal Behaviour of Poly(Methyl Methacrylate)/Poly(Ethylene Glycol) Semi-Interpenetrating Polymer Networks. J. Chil. Chem. Soc. 2011, 56, 918–921. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.C.; Andrade, G.R.S.; Almeida, L.E. Biodegradation in simulated soil of HDPE/pro-oxidant/rice husk composites: Application in agricultural tubes. Matéria (Rio de Janeiro) 2018, 23. [Google Scholar] [CrossRef]
- Massey, S.; Adnot, A.; Rjeb, A.; Roy, D. Action of water in the degradation of low-density polyethylene studied by X-ray photoelectron spectroscopy. Express Pol. Lett. 2007, 1, 506–511. [Google Scholar] [CrossRef]
- Ayrea, W.N.; Denyerb, S.P.; Evans, S.L. Ageing and moisture uptake in polymethylmethacrylate (PMMA) bone cements. J. Mech. Behav. Biomed. Mater. 2014, 32, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K. Tuning and predicting the wetting of nanoengineered material surface. Nanoscale 2016, 8, 4635–4642. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Wang, L.; Shi, J. Cu Nanoparticle-Modified High-Density Polyethylene Monofilament and Its Antifouling Performance on Fishing Netting. Int. J. Polym. Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Wei, C.L.; Zhang, M.Q.; Rang, M.Z.; Friedrich, K. Tensile performance improvement of low nanoparticles filled polypropylene composites. Compos. Sci. Technol. 2002, 62, 1327–1340. [Google Scholar]
- Su, C.-H.; Chen, H.-L.; Ju, S.-P.; Chen, H.-Y.; Shih, C.-W.; Pan, C.-T.; You, T.-D. The Mechanical Behaviors of Polyethylene/Silver Nanoparticle Composites: An Insight from Molecular Dynamics study. Sci. Rep. 2020, 10, 1–14. [Google Scholar]
- Ziąbka, M.; Dziadek, M. Long-Term Stability of Two Thermoplastic Polymers Modified with Silver Nanoparticles. Nanomaterials 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziąbka, M.; Dziadek, M. Long-Lasting Examinations of Surface and Structural Properties of Medical Polypropylene Modified with Silver Nanoparticles. Polymers 2019, 11, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziąbka, M.; Dziadek, M.; Pielichowska, K. Surface and Structural Properties of Medical Acrylonitrile Butadiene Styrene Modified with Silver Nanoparticles. Polymers 2020, 12, 197. [Google Scholar] [CrossRef] [Green Version]
Material | Arithmetical Mean Roughness Ra (µm) | ||
---|---|---|---|
Before Incubation | After 24-Month Incubation | After 36-Month Incubation | |
ABS | 0.046 ± 0.008 | 0.053 ± 0.007 | 0.057 ± 0.005 |
ABS/0.5Ag | 0.046 ± 0.009 | 0.056 ± 0.010 | 0.063 ± 0.013 |
ABS/1Ag | 0.048 ± 0.008 | 0.057 ± 0.009 | 0.060 ± 0.006 |
PMMA | 0.044 ± 0.008 | 0.048 ± 0.008 | 0.048 ± 0.008 |
PMMA/0.5Ag | 0.054 ± 0.011 | 0.055 ± 0.008 | 0.057 ± 0.009 |
PMMA/1Ag | 0.047 ± 0.007 | 0.048 ± 0.011 | 0.052 ± 0.004 |
HDPE | 0.064 ± 0.012 | 0.068 ± 0.011 | 0.072 ± 0.016 |
HDPE/0.5Ag | 0.072 ± 0.005 | 0.077 ± 0.012 | 0.079 ± 0.005 |
HDPE/1Ag | 0.071 ± 0.011 | 0.077 ± 0.017 | 0.087 ± 0.010 |
Material | Static Water Contact Angle (°) | ||
---|---|---|---|
Before Incubation | After 24-Month Incubation | After 36-Month Incubation | |
ABS | 78.0 ± 2.1 | 74.9 ± 4.1 | 57.9 ± 1.5 |
ABS/0.5Ag | 79.1 ± 1.5 | 73.7 ± 3.0 | 60.7 ± 1.5 |
ABS/1Ag | 82.2 ± 2.5 | 76.9 ± 4.8 | 72.4 ± 0.8 |
PMMA | 71.9 ± 2.6 | 72.0 ± 4.7 | 72.0 ± 1.7 |
PMMA/0.5Ag | 73.9 ± 3.4 | 70.3 ± 1.7 | 70.4 ± 3.4 |
PMMA/1Ag | 76.2 ± 2.9 | 74.0 ± 2.4 | 69.2 ± 2.4 |
HDPE | 87.3 ± 0.9 | 75.0 ± 3.1 | 67.0 ± 5.3 |
HDPE/0.5Ag | 86.2 ± 0.8 | 77.8 ± 5.0 | 71.0 ± 3.4 |
HDPE/1Ag | 89.4 ± 0.7 | 82.8 ± 3.1 | 74.1 ± 1.9 |
Material | Young Modulus Et (GPa) | ||
---|---|---|---|
Before Incubation | After 24-Month Incubation | After 36-Month Incubation | |
ABS | 1.63 ± 0.06 | 1.69 ± 0.02 | 1.74 ± 0.02 |
ABS/0.5Ag | 1.64 ± 0.04 | 1.69 ± 0.03 | 1.79 ± 0.03 |
ABS/1Ag | 1.61 ± 0.03 | 1.68 ± 0.03 | 1.78 ± 0.01 |
PMMA | 1.71 ± 0.04 | 1.76 ± 0.05 | 1.87 ± 0.05 |
PMMA/0.5Ag | 1.71 ± 0.05 | 1.74 ± 0.01 | 1.81 ± 0.04 |
PMMA/1Ag | 1.69 ± 0.05 | 1.74 ± 0.05 | 1.86 ± 0.03 |
HDPE | 0.65 ± 0.03 | 1.03 ± 0.03 | 1.08 ± 0.01 |
HDPE/0.5Ag | 0.68 ± 0.03 | 1.03 ± 0.02 | 1.08 ± 0.01 |
HDPE/1Ag | 0.69 ± 0.03 | 1.06 ± 0.02 | 1.09 ± 0.03 |
Material | Tensile Strength σM (MPa) | ||
---|---|---|---|
Before Incubation | After 24-Month Incubation | After 36-Month Incubation | |
ABS | 48.70 ± 1.13 | 52.06 ± 0.36 | 52.77 ± 1.42 |
ABS/0.5Ag | 48.83 ± 1.43 | 52.51 ± 0.90 | 52.60 ± 1.14 |
ABS/1Ag | 48.05 ± 1.33 | 52.12 ± 0.67 | 53.19 ± 1.07 |
PMMA | 54.54 ± 1.64 | 61.99 ± 1.81 | 63.05 ± 0.76 |
PMMA/0.5Ag | 55.09 ± 1.57 | 61.49 ± 1.64 | 62.80 ± 1.04 |
PMMA/1Ag | 54.53 ± 1.27 | 60.26 ± 1.91 | 61.80 ± 0.79 |
HDPE | 17.88 ± 0.23 | 24.24 ± 0.97 | 25.72 ± 0.38 |
HDPE/0.5Ag | 17.94 ± 0.34 | 25.13 ± 0.50 | 25.23 ± 0.59 |
HDPE/1Ag | 18.26 ± 0.18 | 25.60 ± 0.28 | 25.62 ± 0.66 |
Material | Elongation at Maximum Force εM (%) | ||
---|---|---|---|
Before Incubation | After 24-Month Incubation | After 36-Month Incubation | |
ABS | 4.40 ± 0.16 | 1.17 ± 0.07 | 1.25 ± 0.01 |
ABS/0.5Ag | 6.04 ± 0.11 | 2.82 ± 0.10 | 2.97 ± 0.06 |
ABS/1Ag | 6.13 ± 0.12 | 2.78 ± 0.05 | 2.94 ± 0.13 |
PMMA | 6.23 ± 0.17 | 2.73 ± 0.07 | 2.99 ± 0.13 |
PMMA/0.5Ag | 11.77 ± 0.17 | 9.44 ± 0.16 | 9.27 ± 0.34 |
PMMA/1Ag | 11.54 ± 0.33 | 8.45 ± 0.40 | 8.37 ± 0.48 |
HDPE | 11.48 ± 0.25 | 8.25 ± 0.29 | 8.28 ± 0.33 |
HDPE/0.5Ag | 4.40 ± 0.16 | 1.17 ± 0.07 | 1.25 ± 0.01 |
HDPE/1Ag | 6.04 ± 0.11 | 2.82 ± 0.10 | 2.97 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziąbka, M.; Dziadek, M. Thermoplastic Polymers with Nanosilver Addition—Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period. Materials 2021, 14, 361. https://doi.org/10.3390/ma14020361
Ziąbka M, Dziadek M. Thermoplastic Polymers with Nanosilver Addition—Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period. Materials. 2021; 14(2):361. https://doi.org/10.3390/ma14020361
Chicago/Turabian StyleZiąbka, Magdalena, and Michał Dziadek. 2021. "Thermoplastic Polymers with Nanosilver Addition—Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period" Materials 14, no. 2: 361. https://doi.org/10.3390/ma14020361
APA StyleZiąbka, M., & Dziadek, M. (2021). Thermoplastic Polymers with Nanosilver Addition—Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period. Materials, 14(2), 361. https://doi.org/10.3390/ma14020361