Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, C.T.J.; Wills, R.G.A.; Walsh, F.C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 2006, 201, 371–383. [Google Scholar] [CrossRef]
- Walsh, F.C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology. Trans. IMF 2014, 92, 83–98. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Koreshkova, A.A. Electrochemical deposition and properties of composite coatings consisting of zinc and carbon nanotubes. Russ. J. Appl. Chem. 2015, 88, 272–274. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Solov’ova, N.D.; Gun’kin, I.F. Electrodeposition of nickel-fullerene C60 composition coatings. Prot. Met. 2007, 43, 388–390. [Google Scholar] [CrossRef]
- Giannopoulos, F.; Chronopoulou, N.; Bai, J.; Zhao, H.; Pantelis, D.; Pavlatou, E.A.I.; Karatonis, A. Nickel/MWCNT-Al2O3 electrochemical co-deposition: Structural properties and mechanistics aspects. Electrochim. Acta 2016, 207, 76–86. [Google Scholar] [CrossRef]
- Hatipoglu, G.; Kartal, M.; Uysal, M.; Cetinkaya, T.; Akbulut, H. The effect of sliding speed on the wear behaviour of pulse electro co-deposited Ni/MWCNT nanocomposite coatings. Tribol. Int. 2016, 98, 59–73. [Google Scholar] [CrossRef]
- Mosallanejad, M.H.; Shafyei, A.; Akhavan, S. Simultaneous co-deposition of SiC and CNT into the Ni coating. Can. Metall. Q. 2016, 55, 147–155. [Google Scholar] [CrossRef]
- Gyawali, G.; Joshi, B.; Tripathi, K.; Lee, S.W. Effect of ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni-SiC composite coatings. J. Mater. Eng. Perform. 2017, 26, 4462–4469. [Google Scholar] [CrossRef]
- Legkaya, D.A.; Solov’eva, N.D.; Yakovlev, A.V. Physicomechanical properties of nickel coating deposited from sulfate nickel plating electrolyte using preliminary underpotential deposition. Russ. J. Appl. Chem. 2017, 90, 1454–1458. [Google Scholar] [CrossRef]
- Makarova, I.; Dobryden, I.; Kharitonov, D.; Kasach, A.; Ryl, J.; Repo, E.; Vuorinen, E. Nickel-nanodiamond coatings electrodeposited from tartrate electrolyte at ambient temperature. Surf. Coat. Technol. 2019, 380, 125063. [Google Scholar] [CrossRef]
- Lanzutti, A.; Lekka, M.; de Leitenburg, C.; Fedrizzi, L. Effect of pulse current on wear behaviour of Ni matrix micro- and nano-SiC composite coatings at room and elevated temperature. Tribol. Int. 2019, 132, 50–61. [Google Scholar] [CrossRef]
- Vinogradov, S.N.; Sinenkova, O.K. Electrodeposition and physicomechanical properties of nickel-chromium coatings. Russ. J. Appl. Chem. 2007, 80, 1667–1669. [Google Scholar] [CrossRef]
- Meenu, S.; Grips, V.K.; Rajam, K.S. Structure and properties of electrodeposited Ni-Co-YZA composite coatings. J. Appl. Electrochem. 2008, 38, 669–677. [Google Scholar]
- Nayana, O.; Venkatesha, T.V. Effect of ethyl vanillin of ZnNi alloy electrodeposition and its properties. Bull. Mater. Sci. 2014, 37, 1137–1146. [Google Scholar] [CrossRef][Green Version]
- Tseluikin, V.N.; Koreshkova, A.A. Electrodeposition of zinc-nickel-carbon nanotubes composite coatings. Prot. Met. Phys. Chem. Surf. 2016, 52, 1040–1042. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; SabourRouhaghdam, A. Electrodeposition of Fe-Ni alloys compoosites, and nano coatings: A review. J. Alloys Compd. 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Rahmani, H.; Aliofkhazraei, M.; Karimzadeh, A. Effect of frequency and duty cycle on corrosion and wear resistance of functionally graded Zn-Ni nanocomposite coating. Can. Metall. Q. 2018, 57, 99–108. [Google Scholar] [CrossRef]
- Beltowska-Lehmana, E.; Bigosa, A.; Indykab, P.; Chojnackaa, A.; Drewienkiewiczc, A.; Zimowskid, S.; Kotd, M.; Szczerbaa, M.J. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites. J. Electroanal. Chem. 2018, 813, 39–51. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Koreshkova, A.A. Pulsed electrodeposition of composite coatings based on zinc-nickel alloy. Prot. Met. Phys. Chem. Surf. 2018, 54, 453–456. [Google Scholar] [CrossRef]
- Yakovlev, A.V.; Yakovleva, E.V.; Tseluikin, V.N.; Krasnov, V.V.; Mostovoy, A.S.; Rakhmetulina, L.A.; Frolov, I.N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem. 2019, 55, 1196–1202. [Google Scholar] [CrossRef]
- Chang, L.M.; Chen, D.; Liu, J.H.; Zhang, R.J. Effect of different plating modes on microstructure and corrosion resistance of Zn-Ni alloy coatings. J. Alloys Compd. 2009, 479, 489–493. [Google Scholar] [CrossRef]
- Pinate, S.; Leisner, P.; Zanella, C. Electrocodeposition of nano-SiC particles by pulse-reverse under an adapted waveform. J. Electrochem. Soc. 2019, 166, D804–D809. [Google Scholar]
- Guglielmi, N. Kinetics of the deposition of inert particles from electrolytic bath. J. Electrochem. Soc. 1972, 119, 1009–1012. [Google Scholar] [CrossRef]
- Yang, F.; Kang, H.; Guo, E.; Li, R.; Chen, Z.; Zeng, Y. The role of nickel in mechanical perfopmance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 139, 333–345. [Google Scholar] [CrossRef]
- Rekha, M.Y.; Srivastava, C. Microstructural evolution and corrosion behavior of Zn-Ni-graphene oxide composite coatings. Metall. Mater. Trans. A 2019, 50, 5896–5913. [Google Scholar] [CrossRef]





| No. | Electrolyte Composition | Concentration, g/L | Deposition Parameters |
|---|---|---|---|
| 1 | NiSO4·7H2O | 220 | Temperature t = 45 °C |
| 2 | NiCl2·6H2O | 40 | – |
| 3 | CH3COONa | 30 | – |
| 4 | Graphene oxide | 10 | – |
| Time Ratio tc/ta, s | Nickel | nickel–GO CECs |
|---|---|---|
| 10:1 | 0.656 | 0.451 |
| 12:1 14:1 16:1 | 0.533 0.410 0.246 | 0.369 0.287 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseluikin, V.; Dzhumieva, A.; Yakovlev, A.; Mostovoy, A.; Zakirova, S.; Strilets, A.; Lopukhova, M. Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials 2021, 14, 5624. https://doi.org/10.3390/ma14195624
Tseluikin V, Dzhumieva A, Yakovlev A, Mostovoy A, Zakirova S, Strilets A, Lopukhova M. Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials. 2021; 14(19):5624. https://doi.org/10.3390/ma14195624
Chicago/Turabian StyleTseluikin, Vitaly, Asel Dzhumieva, Andrey Yakovlev, Anton Mostovoy, Svetlana Zakirova, Anastasia Strilets, and Marina Lopukhova. 2021. "Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings" Materials 14, no. 19: 5624. https://doi.org/10.3390/ma14195624
APA StyleTseluikin, V., Dzhumieva, A., Yakovlev, A., Mostovoy, A., Zakirova, S., Strilets, A., & Lopukhova, M. (2021). Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials, 14(19), 5624. https://doi.org/10.3390/ma14195624

