Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Material
2.2. High Temperature Tensile Test
2.3. Isothermal Forming Limit Experiment of Aluminum Alloy Sheet
3. 7075 Aluminum Alloy Isothermal Forming Limit Analysis
3.1. Results of Forming Limit Diagram
3.2. Fracture Morphology Analysis
4. Optimization of Hot Stamping Process Parameters of Automobile S-Rail
4.1. Finite Element Model
4.2. Orthogonal Experimental Design Based on Hot Stamping Process
4.3. Establishment of GA-BP Network
4.4. Verification of Prediction Results and Finite Element Analysis
5. Conclusions
- In the isothermal forming limit experiment, when the stamping speed was 20 mm, the forming limit increased from 310 °C to 410 °C, and the maximum principal strain increased from 0.443 at 310 °C to 0.527 at 410 °C, an increase of about 14%. The change in stamping speed (10–40 mm/s) has a small effect on the forming limit of 7075 aluminum alloy within the applicable range of this experimental press.
- In the GA-BP neural network, to optimize the parameters of automotive S-rail hot stamping process, the results predicted by GA-BP are very close to the experimental results of the training samples. The correlation coefficient of training data reaches 0.9956, indicating that the fit effect is very good. Meanwhile, the R-values for the regression analysis used for the validation data and the test data reached 0.99873 and 0.9911, respectively, indicating that the model is reliable. The optimal process parameters for hot stamping of 7075 aluminum alloy predicted by GA-BP neural network are: stamping speed is 50 mm/s, friction coefficient between die and blank is 0.1, and the blank holder force is 5 kN. The maximum thinning rate is 9.37%.
- The hot stamping process parameters optimized by GA-BP neural network are input into ABAQUS for verification. The maximum thinning rate obtained is 9.81%, and the error with the maximum thinning rate predicted by the GA-BP neural network is only 5%, which illustrates the accuracy of the prediction of the GA-BP neural network. From the results, the normalized average thickness is 0.9913 mm, and the standard deviation of thickness is 0.002 mm. Comparing the results with the forming limit diagram, all units of the simulation results are in the safe zone, indicating excellent hot stamping formability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Liu, Y.; Chen, J. The impact of the Chinese automotive industry: Scenarios based on the national environmental goals. J. Clean. Prod. 2015, 96, 102–109. [Google Scholar] [CrossRef]
- Kumar, D.; Phanden, R.K.; Thakur, L. A review on environment friendly and lightweight Magnesium-Based metal matrix composites and alloys. Mater. Today Proc. 2021, 38, 359–364. [Google Scholar] [CrossRef]
- Li, H.; Yan, Z.; Cao, L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Mater. Sci. Eng. A 2018, 728, 88–94. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zheng, K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int. J. Adv. Manuf. Technol. 2017, 92, 3299–3309. [Google Scholar] [CrossRef]
- Gao, T.; Ying, L.; Hu, P.; Han, X.; Rong, H.; Wu, Y.; Sun, J. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test: Experimental trials, numerical analysis. J. Manuf. Processes 2020, 50, 1–16. [Google Scholar] [CrossRef]
- Bruschi, S.; Altan, T.; Banabic, D.; Bariani, P.F.; Brosius, A.; Cao, J.; Ghiotti, A.; Khraisheh, M.; Merklein, M.; Tekkaya, A.E. Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann. 2014, 63, 727–749. [Google Scholar] [CrossRef]
- Erfanian, M.; Hashemi, R. A comparative study of the extended forming limit diagrams considering strain path, through-thickness normal and shear stress. Int. J. Mech. Sci. 2018, 148, 316–326. [Google Scholar] [CrossRef]
- Killer, S.P.; Backofen, W.A. Plastic instability and fracture in sheets stretched over rigid punches. Punches Trans. ASM 1963, 56, 25–48. [Google Scholar]
- Goodwin, G.M. Application of strain analysis to sheet metal forming problems in the press shop. SAE Trans. 1968, 380–387. [Google Scholar]
- Emanuela, A.; Marion, M. Metallographic Analysis of Nakajima Tests for the Evaluation of the Failure Developments. Procedia Eng. 2017, 183, 83–88. [Google Scholar] [CrossRef]
- Suttner, S.; Merklein, M. Characterization of the Shear Stress State Under Non-Proportional Strain Paths Realized by Biaxial Stretching in the Marciniak Test. Mater. Today Proc. 2015, 2, S98–S106. [Google Scholar] [CrossRef]
- Xiao, W.-C.; Wang, B.-Y.; Kang, Y.; Ma, W.-P.; Tang, X.-F. Deep drawing of aluminum alloy 7075 using hot stamping. Rare Met. 2017, 36, 485–493. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Wang, Z.; Zhu, B.; Wang, Y.; Zhang, Y. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Eng. 2017, 207, 723–728. [Google Scholar] [CrossRef]
- Song, Y.; Dai, D.; Geng, P.; Hua, L. Formability of aluminum alloy thin-walled cylinder parts by servo hot stamping. Procedia Eng. 2017, 207, 741–746. [Google Scholar] [CrossRef]
- Liu, X.; Ji, K.; Fakir, O.E.; Fang, H.; Gharbi, M.M.; Wang, L. Determination of the interfacial heat transfer coefficient for a hot aluminium stamping process. J. Mater. Process. Technol. 2017, 247, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Hu, P.; Ying, L.; Hou, W.; Zhang, J. Thermal forming limit diagram (TFLD) of AA7075 aluminum alloy based on a modified continuum damage model: Experimental and theoretical investigations. Int. J. Mech. Sci. 2019, 156, 59–73. [Google Scholar] [CrossRef]
- Ying, L.; Gao, T.; Rong, H.; Han, X.; Hu, P.; Hou, W. On the thermal forming limit diagram (TFLD) with GTN mesoscopic damage model for AA7075 aluminum alloy: Numerical and experimental investigation. J. Alloys Compd. 2019, 802, 675–693. [Google Scholar] [CrossRef]
- Liu, X.; El Fakir, O.; Cai, Z.; Dalkaya, B.; Wang, K.; Gharbi, M.M.; Wang, L. Development of an interfacial heat transfer coefficient model for the hot and warm aluminium stamping processes under different initial blank temperature conditions. J. Mater. Process. Technol. 2019, 273, 116245. [Google Scholar] [CrossRef]
- Ma, W.-Y.; Wang, B.-Y.; Fu, L.; Zhou, J.; Huang, M.-D. Effect of friction coefficient in deep drawing of AA6111 sheet at elevated temperatures. Trans. Nonferrous Met. Soc. China 2015, 25, 2342–2351. [Google Scholar] [CrossRef]
- Zhou, J.; Mu, Y.; Wang, B. A damage-coupled unified viscoplastic constitutive model for prediction of forming limits of 22MnB5 at high temperatures. Int. J. Mech. Sci. 2017, 133, 457–468. [Google Scholar] [CrossRef]
- Djavanroodi, F.; Ebrahimi, M.; Janbakhsh, M. A study on the stretching potential, anisotropy behavior and mechanical properties of AA7075 and Ti-6Al-4V alloys using forming limit diagram: An experimental, numerical and theoretical approaches. Results Phys. 2019, 14, 102496. [Google Scholar] [CrossRef]
- Shinge, V.R.; Dabade, U.A. Experimental Investigation on Forming Limit Diagram of Mild Carbon Steel Sheet. Procedia Manuf. 2018, 20, 141–146. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Zhou, J.; Xiao, W.; Feng, P. Constitutive modeling of softening mechanism and damage for Ti–6Al–4V alloy and its application in hot tensile simulation process. Arch. Civ. Mech. Eng. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Lin, Y.C.; Deng, J.; Jiang, Y.-Q.; Wen, D.-X.; Liu, G. Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Sci. Eng. A 2014, 598, 251–262. [Google Scholar] [CrossRef]
- Li, Q.; Ning, J.; Chen, L.; Hu, J.; Liu, Y. The mechanical response and microstructural evolution of 2195 Al–Li alloy during hot tensile deformation. J. Alloys Compd. 2020, 848, 156515. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, B.; Lin, J.; Fu, L. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Arch. Civ. Mech. Eng. 2013, 13, 401–411. [Google Scholar] [CrossRef]
- Lin, R.; Diao, X.; Ma, T.; Tang, S.; Chen, L.; Liu, D. Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design. Appl. Energy 2019, 254, 113714. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. Int. J. Hydrogen Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, H.; Zhang, C.; Wang, L.; Han, J. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy 2018, 151, 79–93. [Google Scholar] [CrossRef]
- Li, X.; Hao, J. Orthogonal test design for optimization of synthesis of super early strength anchoring material. Constr. Build. Mater. 2018, 181, 42–48. [Google Scholar] [CrossRef]
- Lu, J.; Song, Y.; Hua, L.; Zheng, K.; Dai, D. Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet based on isothermal uniaxial tensile tests. J. Alloys Compd. 2018, 767, 856–869. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, L.; Yan, B.; Wang, J.; Gao, W. Performance analysis and prediction of asymmetric two-level priority polling system based on BP neural network. Appl. Soft Comput. 2021, 99, 106880. [Google Scholar] [CrossRef]
- Guo, Y. Credit risk assessment of P2P lending platform towards big data based on BP neural network. J. Visual Commun. Image Represent. 2020, 71, 102730. [Google Scholar] [CrossRef]
- Song, Y.; Yue, L.; Wang, Y.; Di, H.; Gao, F.; Li, S.; Zhou, Y.; Hua, D. Research on BP network for retrieving extinction coefficient from Mie scattering signal of lidar. Measurement 2020, 164, 108028. [Google Scholar] [CrossRef]
- Chalisgaonkar, R.; Kumar, J.; Pant, P. Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network. Mater. Today Proc. 2020, 25, 592–601. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chow, H.M.; Lee, H.M.; Liu, J.F. Modelling of the Parameters of EDM in Gas Based on Back Propagation Neural Network. Mater. Sci. Forum 2018, 926, 11–16. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Liu, L. Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network. J. Manuf. Processes 2021, 63, 109–120. [Google Scholar] [CrossRef]
- Wei, W.; Bo, Y. Text categorization based on combination of modified back propagation neural network and latent semantic analysis. Neural Comput. Appl. 2009, 18, 875–881. [Google Scholar]
- Zhang, Y.; Gao, X.; Katayama, S. Weld appearance prediction with BP neural network improved by genetic algorithm during disk laser welding. J. Manuf. Syst. 2015, 34, 53–59. [Google Scholar] [CrossRef]
- Fountas, N.A.; Vaxevanidis, N.M. Optimization of fused deposition modeling process using a virus-evolutionary genetic algorithm. Comput. Ind. 2021, 125, 103371. [Google Scholar] [CrossRef]
- Taheranpour, N.; Talebi, S. Development of a new efficient method using genetic algorithm for increasing of fuel rod life time. Prog. Nucl. Energy 2021, 131, 103600. [Google Scholar] [CrossRef]
- Zou, M.; Xue, L.; Gai, H.; Dang, Z.; Wang, S.; Xu, P. Identification of the shear parameters for lunar regolith based on a GA-BP neural network. J. Terramech. 2020, 89, 21–29. [Google Scholar] [CrossRef]
- Wang, Z.; Fei, Y.; Ye, P.; Qiu, F.; Tian, G.; Woo, W.L. Crack characterization in ferromagnetic steels by pulsed eddy current technique based on GA-BP neural network model. J. Magn. Magn. Mater. 2020, 500, 166412. [Google Scholar] [CrossRef]
- Abbasi, M.; Shafaat, M.A.; Ketabchi, M.; Haghshenas, D.F.; Abbasi, M. Application of the GTN model to predict the forming limit diagram of IF-Steel. J. Mech. Sci. Technol. 2012, 26, 345–352. [Google Scholar] [CrossRef]
Elongation (%) | Young’s Modulus (GPa) | Poisson’s Ratio | Vickers Hardness (HV) | Yield Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|
13 | 72 | 0.3 | 180 | 455 | 600 |
Temperature (°C) | 20 | 310 | 360 | 410 |
---|---|---|---|---|
Thermal conductivity (W/(m·K)) | 121 | 985 | 1004 | 1023 |
Specific heat (/(kg·°C)) | 857 | 148 | 151 | 155 |
Punching Speed (mm/s) | Coefficient of Friction | Blank Holder Force (kN) | Deformation Temperature (°C) | |
---|---|---|---|---|
Level 1 | 10 | 0.1 | 1 | 410 |
Level 2 | 105 | 0.2 | 10.5 | 410 |
Level 3 | 200 | 0.3 | 20 | 410 |
No. | Punching Speed (mm/s) | Coefficient of Friction | Blank Holder Force (kN) | Deformation Temperature (°C) | Maximum Thinning Rate (%) | The Data Type |
---|---|---|---|---|---|---|
1 | 10 | 0.1 | 1 | 410 | 33.08 | Training data |
2 | 10 | 0.1 | 10.5 | 410 | 30.44 | Training data |
3 | 10 | 0.1 | 20 | 410 | 35.83 | Training data |
4 | 10 | 0.2 | 1 | 410 | 35.3 | Training data |
5 | 10 | 0.2 | 10.5 | 410 | 31.65 | Training data |
6 | 10 | 0.2 | 20 | 410 | 37.15 | Training data |
7 | 10 | 0.3 | 1 | 410 | 36.14 | Training data |
8 | 10 | 0.3 | 10.5 | 410 | 33.48 | Training data |
9 | 10 | 0.3 | 20 | 410 | 39.32 | Training data |
10 | 105 | 0.1 | 1 | 410 | 20.63 | Training data |
11 | 105 | 0.1 | 10.5 | 410 | 18.98 | Training data |
12 | 105 | 0.1 | 20 | 410 | 22.36 | Training data |
13 | 105 | 0.2 | 1 | 410 | 23.74 | Training data |
14 | 105 | 0.2 | 10.5 | 410 | 20.06 | Training data |
15 | 105 | 0.2 | 20 | 410 | 27.32 | Training data |
16 | 105 | 0.3 | 1 | 410 | 25.05 | Training data |
17 | 105 | 0.3 | 10.5 | 410 | 21.1 | Training data |
18 | 105 | 0.3 | 20 | 410 | 30.85 | Training data |
19 | 200 | 0.1 | 1 | 410 | 25.33 | Training data |
20 | 200 | 0.1 | 10.5 | 410 | 22.05 | Training data |
21 | 200 | 0.1 | 20 | 410 | 27.06 | Test data |
22 | 200 | 0.2 | 1 | 410 | 26.82 | Test data |
23 | 200 | 0.2 | 10.5 | 410 | 23.08 | Test data |
24 | 200 | 0.2 | 20 | 410 | 28.06 | Test data |
25 | 200 | 0.3 | 1 | 410 | 27.93 | Test data |
26 | 200 | 0.3 | 10.5 | 410 | 24.38 | Test data |
27 | 200 | 0.3 | 20 | 410 | 29.14 | Test data |
Program Name | Population Size | Number of Evolutions | Cross Probability | Variation Probability |
---|---|---|---|---|
Value | 10 | 30 | 0.3 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Ji, H.; Huang, X.; Xiao, W.; Tang, X. Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy. Materials 2021, 14, 5485. https://doi.org/10.3390/ma14195485
Ma Z, Ji H, Huang X, Xiao W, Tang X. Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy. Materials. 2021; 14(19):5485. https://doi.org/10.3390/ma14195485
Chicago/Turabian StyleMa, Zheng, Hongchao Ji, Xiaomin Huang, Wenchao Xiao, and Xuefeng Tang. 2021. "Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy" Materials 14, no. 19: 5485. https://doi.org/10.3390/ma14195485
APA StyleMa, Z., Ji, H., Huang, X., Xiao, W., & Tang, X. (2021). Research on High Temperature Stamping Forming Performance and Process Parameters Optimization of 7075 Aluminum Alloy. Materials, 14(19), 5485. https://doi.org/10.3390/ma14195485