Fabrication of PCDTBT Conductive Network via Phase Separation
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, J.G.; Rincon, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors. Chem. Rev. 2018, 118, 4731–4816. [Google Scholar] [CrossRef]
- Murto, P.; Genene, Z.; Benavides, C.M.; Xu, X.; Sharma, A.; Pan, X.; Schmidt, O.; Brabec, C.J.; Andersson, M.R.; Tedde, S.F.; et al. High Performance All-Polymer Photodetector Comprising a Donor–Acceptor–Acceptor Structured Indacenodithiophene–Bithieno [3,4-c]Pyrroletetrone Copolymer. ACS Macro Lett. 2018, 7, 395–400. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. P3HT-Based Photovoltaic Cells with a High Voc of 1.22 V by Using a Benzotriazole-Containing Nonfullerene Acceptor End-Capped with Thiazolidine-2,4-dione. ACS Macro Lett. 2017, 6, 410–414. [Google Scholar] [CrossRef]
- Rodriquez, D.; Kohl, J.G.; Morel, P.; Burrows, K.; Favaro, G.; Root, S.E.; Ramirez, J.; Alkhadra, M.A.; Carpenter, C.W.; Fei, Z.P.; et al. Measurement of Cohesion and Adhesion of Semiconducting Polymers by Scratch Testing: Effect of Side-Chain Length and Degree of Polymerization. ACS Macro Lett. 2018, 7, 1003–1009. [Google Scholar] [CrossRef]
- Cho, S.; Seo, J.H.; Park, S.H.; Beaupre, S.; Leclerc, M.; Heeger, A.J. A thermally stable semiconducting polymer. Adv. Mater. 2010, 22, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Blouin, N.; Michaud, A.; Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 2007, 19, 2295–2300. [Google Scholar] [CrossRef]
- Lombeck, F.; Di, D.W.; Yang, L.; Meraldi, L.; Athanasopoulos, S.; Credgington, D.; Sommer, M.; Friend, R.H. PCDTBT: From Polymer Photovoltaics to Light-Emitting Diodes by Side-Chain-Controlled Luminescence. Macromolecules 2016, 49, 9382–9387. [Google Scholar] [CrossRef] [Green Version]
- Morin, P.O.; Bura, T.; Sun, B.; Gorelsky, S.I.; Li, Y.N.; Leclerc, M. Conjugated Polymers a la Carte from Time-Controlled Direct (Hetero)Arylation Polymerization. ACS Macro Lett. 2015, 4, 21–24. [Google Scholar] [CrossRef]
- Lombeck, F.; Komber, H.; Gorelsky, S.I.; Sommer, M. Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation. ACS Macro Lett. 2014, 3, 819–823. [Google Scholar] [CrossRef]
- Wang, T.; Pearson, A.J.; Dunbar, A.D.F.; Staniec, P.A.; Watters, D.C.; Yi, H.N.; Ryan, A.J.; Jones, R.A.L.; Iraqi, A.; Lidzey, D.G. Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends. Adv. Funct. Mater. 2012, 22, 1399–1408. [Google Scholar] [CrossRef]
- Clulow, A.J.; Gilbert, E.P.; Wolfer, P.; Burn, P.L.; Gentle, I.R. Clustering of High Molecular Weight PCDTBT in Bulk-Heterojunction Casting Solutions. Macromolecules 2015, 48, 8331–8336. [Google Scholar] [CrossRef]
- Samal, S.; Thompson, B.C. Converging the Hole Mobility of Poly(2-N-carbazoylethyl acrylate) with Conjugated Polymers by Tuning Isotacticity. ACS Macro Lett. 2018, 7, 1161–1167. [Google Scholar] [CrossRef]
- Brinkmann, M. Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1218–1233. [Google Scholar] [CrossRef]
- Jiang, X.; Reiter, G.; Hu, W. How Chain-Folding Crystal Growth Determines the Thermodynamic Stability of Polymer Crystals. J. Phys. Chem. B 2016, 120, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.Z.; Liu, C.; Xu, X.F.; Liu, X.C.; Zhang, L.J.; Nian, Y.W.; Cao, Y.; Chen, J.W. Siloxane-Terminated Side Chain Engineering of Acceptor Polymers Leading to Over 7% Power Conversion Efficiencies in All-Polymer Solar Cells. ACS Macro Lett. 2017, 6, 1310–1314. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Heck, B.; Schiefer, D.; Agumba, J.O.; Sommer, M.; Wen, T.; Reiter, G. Anisotropic Photophysical Properties of Highly Aligned Crystalline Structures of a Bulky Substituted Poly(thiophene). ACS Macro Lett. 2014, 3, 881–885. [Google Scholar] [CrossRef]
- Crossland, E.J.; Tremel, K.; Fischer, F.; Rahimi, K.; Reiter, G.; Steiner, U.; Ludwigs, S. Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv Mater. 2012, 24, 839–844. [Google Scholar] [CrossRef]
- Crossland, E.J.W.; Rahimi, K.; Reiter, G.; Steiner, U.; Ludwigs, S. Systematic Control of Nucleation Density in Poly(3-Hexylthiophene) Thin Films. Adv. Funct. Mater. 2011, 21, 518–524. [Google Scholar] [CrossRef]
- Moon, J.S.; Jo, J.; Heeger, A.J. Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells. Adv. Energy Mater. 2012, 2, 304–308. [Google Scholar] [CrossRef]
- Pokuri, B.S.S.; Sit, J.; Wodo, O.; Baran, D.; Ameri, T.; Brabec, C.J.; Moule, A.J.; Ganapathysubramanian, B. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films. Adv. Energy Mater. 2017, 7, 1701269. [Google Scholar] [CrossRef] [Green Version]
- Neff, A.; Niefind, F.; Abel, B.; Mannsfeld, S.C.B.; Siefermann, K.R. Imaging Nanoscale Morphology of Semiconducting Polymer Films with Photoemission Electron Microscopy. Adv Mater. 2017, 29, 1701012. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, W.B.; Reiter, G. Lamellar crystal orientations biased by crystallization kinetics in polymer thin films. Macromolecules 2006, 39, 5159–5164. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.J.; Liu, B.C.; Wang, B.H.; Shen, C.Y.; Reiter, R.; Chen, J.B.; Reiter, G. Morphological Changes of Isotactic Polypropylene Crystals Grown in Thin Films. Macromolecules 2017, 50, 6210–6217. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.; Chen, J.; Shen, C.; Reiter, R.; Chen, J.; Reiter, G. Flow-Induced Dendritic β-Form Isotactic Polypropylene Crystals in Thin Films. Macromolecules 2016, 49, 5145–5151. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.B.; Freyberg, P.; Reiter, R.; Mulhaupt, R.; Xu, J.; Reiter, G. High-Temperature Stability of Dewetting-Induced Thin Polyethylene Filaments. Macromolecules 2015, 48, 1518–1523. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, C.; Zhan, X. Morphology Control in Organic Solar Cells. Adv. Energy Mater. 2018, 0, 1703147. [Google Scholar] [CrossRef]
- Stoltzfus, D.M.; Donaghey, J.E.; Armin, A.; Shaw, P.E.; Burn, P.L.; Meredith, P. Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. Chem. Rev. 2016, 116, 12920–12955. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, K.; Yin, Q.; Jiang, X.F.; Wang, Z.; Xin, J.; Ma, W.; Yan, H.; Huang, F.; Cao, Y. High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor. J. Am. Chem. Soc. 2017, 139, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Jakowetz, A.C.; Bohm, M.L.; Zhang, J.; Sadhanala, A.; Huettner, S.; Bakulin, A.A.; Rao, A.; Friend, R.H. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends. J. Am. Chem. Soc. 2016, 138, 11672–11679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, D.; Ribbe, A.; Kim, H.; Hayward, R.C. Stress-Induced Orientation of Cocontinuous Nanostructures within Randomly End-Linked Copolymer Networks. ACS Macro Lett. 2018, 7, 828–833. [Google Scholar] [CrossRef]
- Qiang, Z.; Akolawala, S.A.; Wang, M.Z. Simultaneous In-Film Polymer Synthesis and Self-Assembly for Hierarchical Nanopatterns. ACS Macro Lett. 2018, 7, 566–571. [Google Scholar] [CrossRef]
- Bates, F.S. Polymer-polymer phase behavior. Science 1991, 251, 898–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.J.; Zhang, J.L.; Han, Y.C. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012, 37, 564–594. [Google Scholar] [CrossRef]
- Zhao, K.; Ding, Z.; Xue, L.; Han, Y. Crystallization-Induced Phase Segregation Based on Double-Crystalline Blends of Poly(3-hexylthiophene) and Poly(ethylene glycol)s. Macromol. Rapid Commun. 2010, 31, 532–538. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, H.; Zhou, K.; Zhang, J.D.; Yu, X.H.; Liu, J.G.; Han, Y.C. Molecular Orientation and Phase Separation by Controlling Chain Segment and Molecule Movement in P3HT/N2200 Blends. Macromolecules 2016, 49, 6987–6996. [Google Scholar] [CrossRef]
- Wei, J.H.; Coffey, D.C.; Ginger, D.S. Nucleating pattern formation in spin-coated polymer blend films with nanoscale surface templates. J. Phys. Chem. B 2006, 110, 24324–24330. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xing, R.B.; Zhang, Y.; Han, Y.C.; An, L.J. Molecular weight effects on the phase morphology of PS/P4VP blend films on homogeneous SAM and heterogeneous SAM/Au substrates. Polymer 2004, 45, 1637–1646. [Google Scholar] [CrossRef]
- Raczkowska, J.; Cyganik, P.; Budkowski, A.; Bernasik, A.; Rysz, J.; Raptis, I.; Czuba, P.; Kowalski, K. Composition effects in polymer blends spin-cast on patterned substrates. Macromolecules 2005, 38, 8486–8493. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, J.; Baier, M.C.; Mecking, S.; Reiter, R.; Mulhaupt, R.; Reiter, G. Molecular-weight-dependent changes in morphology of solution-grown polyethylene single crystals. Macromol. Rapid Commun. 2015, 36, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huettner, S.; Rong, Z.; Sommer, M.; Friend, R.H. Solvent additive control of morphology and crystallization in semiconducting polymer blends. Adv. Mater. 2012, 24, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Goffri, S.; Muller, C.; Stingelin-Stutzmann, N.; Breiby, D.W.; Radano, C.P.; Andreasen, J.W.; Thompson, R.; Janssen, R.A.; Nielsen, M.M.; Smith, P.; Sirringhaus, H. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat. Mater. 2006, 5, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Tang, S.H.; Wang, Y.; Shen, C.Y.; Reiter, R.; Reiter, G.; Chen, J.B.; Zhang, B. Systematic Control of Self-Seeding Crystallization Patterns of Poly(ethylene oxide) in Thin Films. Macromolecules 2018, 51, 1626–1635. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Y.; Hu, W.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding. Nat. Mater. 2009, 8, 348–353. [Google Scholar] [CrossRef]
- Kim, T.; Yang, S.J.; Kim, S.K.; Choi, H.S.; Park, C.R. Preparation of PCDTBT nanofibers with a diameter of 20 nm and their application to air-processed organic solar cells. Nanoscale 2014, 6, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Etzold, F.; Howard, I.A.; Mauer, R.; Meister, M.; Kim, T.D.; Lee, K.S.; Baek, N.S.; Laquai, F. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends. J. Am. Chem. Soc. 2011, 133, 9469–9479. [Google Scholar] [CrossRef]
- Banerji, N.; Cowan, S.; Leclerc, M.; Vauthey, E.; Heeger, A.J. Exciton formation, relaxation, and decay in PCDTBT. J. Am. Chem. Soc. 2010, 132, 17459–17470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.; Liu, J.G.; Zhang, R.; Zhao, Q.Q.; Cao, X.X.; Yu, X.H.; Xing, R.B.; Han, Y.C. The molecular regioregularity induced morphological evolution of polymer blend thin films. Polymer 2016, 86, 105–112. [Google Scholar] [CrossRef]
- You, J.C.; Liao, Y.G.; Men, Y.F.; Shi, T.F.; An, L.J.; Li, X.H. Composition Effect on Interplay between Phase Separation and Dewetting in PMMA/SAN Blend Ultrathin Films. Macromolecules 2011, 44, 5318–5325. [Google Scholar] [CrossRef]
- Müller-Buschbaum, P.; Gutmann, J.S.; Stamm, M. Influence of Blend Composition on Phase Separation and Dewetting of Thin Polymer Blend Films. Macromolecules 2000, 33, 4886–4895. [Google Scholar] [CrossRef]
- Meier, R.; Ruderer, M.A.; Diethert, A.; Kaune, G.; Korstgens, V.; Roth, S.V.; Muller-Buschbaum, P. Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films. J. Phys. Chem. B 2011, 115, 2899–2909. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Lim, J.A.; Wang, X.; Lee, W.H.; Hwang, M.; Cho, K. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Adv. Mater. 2008, 20, 1141–1145. [Google Scholar] [CrossRef]
- Reiter, G.; Sommer, J.-U. Crystallization of adsorbed polymer monolayers. Phys. Rev. Lett. 1998, 80, 3771. [Google Scholar] [CrossRef]
- Reiter, G.; Vidal, L. Crystal growth rates of diblock copolymers in thin films: influence of film thickness. Eur. Phys. J. E 2003, 12, 497–505. [Google Scholar] [CrossRef]
- Keith, H.D.; Padden, F.J. A Phenomenological Theory of Spherulitic Crystallization. J. Appl. Phys. 1963, 34, 2409–2421. [Google Scholar] [CrossRef]
- Wang, H.-W.; Pentzer, E.; Emrick, T.; Russell, T.P. Preparation of Low Band Gap Fibrillar Structures by Solvent-Induced Crystallization. ACS Macro Lett. 2013, 3, 30–34. [Google Scholar] [CrossRef]
- Gebauer, D.; Kellermeier, M.; Gale, J.D.; Bergstrom, L.; Colfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 2014, 43, 2348–2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, C.; Michels, J.J.; van der Schoot, P. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation. Macromolecules 2016, 49, 6858–6870. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, Z.; Jing, L.; Chen, J. Fabrication of PCDTBT Conductive Network via Phase Separation. Materials 2021, 14, 5071. https://doi.org/10.3390/ma14175071
Xu J, Liu Z, Jing L, Chen J. Fabrication of PCDTBT Conductive Network via Phase Separation. Materials. 2021; 14(17):5071. https://doi.org/10.3390/ma14175071
Chicago/Turabian StyleXu, Jianwei, Zhiming Liu, Lei Jing, and Jingbo Chen. 2021. "Fabrication of PCDTBT Conductive Network via Phase Separation" Materials 14, no. 17: 5071. https://doi.org/10.3390/ma14175071
APA StyleXu, J., Liu, Z., Jing, L., & Chen, J. (2021). Fabrication of PCDTBT Conductive Network via Phase Separation. Materials, 14(17), 5071. https://doi.org/10.3390/ma14175071