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Abstract: Poly[N-9′-hepta-decanyl-2,7-carbazole-alt-5-5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]
(PCDTBT) is a stable semiconducting polymer with high rigidity in its molecular chains, which makes
it difficult to organize into an ordered structure and affects the device performance. Here, a PCDTBT
network consisting of aggregates and nanofibers in thin films was fabricated through the phase
separation of mixed PCDTBT and polyethylene glycol (PEG). Using atomic force microscopy (AFM),
the effect of the blending conditions (weight ratio, solution concentration, and molecular weight)
and processing conditions (substrate temperature and solvent) on the resulting phase-separated
morphologies of the blend films after a selective washing procedure was studied. It was found that
the phase-separated structure’s transition from an island to a continuous structure occurred when
the weight ratio of PCDTBT/PEG changed from 2:8 to 7:3. Increasing the solution concentration from
0.1 to 3.0 wt% led to an increase in both the height of the PCDTBT aggregate and the width of the
nanofiber. When the molecular weight of the PEG was increased, the film exhibited a larger PCDTBT
aggregate size. Meanwhile, denser nanofibers were found in films prepared using PCDTBT with
higher molecular weight. Furthermore, the electrical characteristics of the PCDTBT network were
measured using conductive AFM. Our findings suggest that phase separation plays an important
role in improving the molecular chain diffusion rate and fabricating the PCDTBT network.

Keywords: PCDTBT; PEG; polymer blends; phase separation; conductive network

1. Introduction

Conjugated polymers have been extensively studied, as they show great potential in
achieving large-area, lightweight, flexible electronics, such as organic solar cells (OSCs)
and organic field-effect transistors (OFETs) [1–5]. Poly[N-9′′-hepta-decanyl-2,7-carbazole-
alt-5-5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), one of the most prominent
conjugated polymers, has attracted a great deal of attention due to its thermal stability,
low optical band-gap, and ambipolar property [6–10]. However, compared with other
conjugated polymers, such as poly(3-hexylthiophene) (P3HT), the high rigidity of PCDTBT
molecular chains makes it more difficult to organize into an ordered structure [11,12].

It is well-known that the performance of electronic devices was determined by the
morphology and structure of conjugated polymers [13–16]. As the charge carrier transfers
faster along conjugated back-bones and π-stacking direction, crystals exhibit better charge
transport properties than the amorphous zone [17–19]. Moreover, the orientation of micro-
and nano-scale ordered structures also plays an important role in charge transport [20–22].
Up to now, many approaches have been carried out to control the ordered structures of
conjugated polymers as well as their properties, including crystallization from solution,
annealing, phase separation, etc. [23–26]. When two immiscible polymers are mixed,
the most frequent result is a system that exhibits almost total phase separation, which
significantly influences their final morphology [27–32]. This can be explained in terms of
the reduced combinatorial entropy that results from mixing two types of polymer chains.
Two mechanisms, the nucleation-growth mechanism and the spinodal decomposition
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mechanism, have been developed to explain the corresponding phase separation behavior
in the thermodynamically metastable and unstable regions of the phase diagram [33,34].
Han [35], Liu [36], and Ginger [37] reported the influence of phase separation on P3HT
crystallization. However, phase-separated morphology and structure are sensitive to
many parameters, such as the polymer molecular weight, the blend weight ratio, the
solution concentration, etc. [38–41]. High-performance, semiconducting architectures can
be obtained through blending a conjugated polymer with another semi-crystalline polymer,
based on crystallization-driven phase separation [42].

Conjugated polymers’ films or devices were usually fabricated using the spin-coating
technique, where a mixed solution of the polymer and a volatile solvent is spun at high
speeds on a solid substrate. In a fast-drying process accompanied by phase separation,
polymer chains are transformed into ordered structures under conditions far away from
thermodynamic equilibrium, which is similar to the process that occurs during the spin-
coating of mixed polymer solutions. It is unclear how polymer chains are transported to
the growing aggregates over long distances of a few micrometers in the extremely short
time available (about a few seconds) in such evaporating, thin films. To explore how phase
separation and crystallization affect the formation of the ordered structures of conjugated
polymers, this work blended PCDTBT with a well-studied model polymer, PEG [43–45]
(PEG is a kind of flexible polymer with a relatively strong crystallization ability and it can
be easily removed by solvents), with chlorobenzene as a common solvent. The conductivity
of the phase-separated morphologies of PCDTBT was investigated using conductive atomic
force microscopy (CAFM).

2. Experimental Section

The chemical structures of PCDTBT and PEG are shown in Figure S1 in Supplementary
Materials. Two PCDTBT samples (Mn = 16.2 and 30.0 kg/mol) were purchased from
Ossila and 1-material Inc., respectively. Five PEG materials (Mn = 1, 4.6, 20, 35, and
100 kg/mol) were obtained from Aldrich Chemical Co. The chlorobenzene and chloroform
were analytical grade, and they were used without any further purification.

PCDTBT and PEG solutions with different concentrations (0.1–3.0 wt%) were prepared
by dissolving each polymer in chlorobenzene; the solutions were then annealed at 70 ◦C
for 6 h and 1 h, respectively [46,47]. A series of blend solutions were produced by mixing
PCDTBT and PEG solutions at weight ratios of 2:8, 4:6, 5:5, 6:4, 7:3, and 8:2. To prepare
PCDTBT/PEG blend films, mixed solutions were spin-coated onto silicon wafers (P100
type) using a KW-4A spin-coater. The spin speed and time were 3000 rpm and 60 s,
respectively. Silicon substrates were treated by UV ozone for 1 h before being placed on the
spin-coater, heated by a homemade heater, and kept at the spin-coating temperature (Tsp)
for 5 min before coating. All experiments were performed under a nitrogen environment.

The surface morphologies of the resulting blend films were collected using Bruker
Dimension Icon atomic force microscopy (AFM) in ScanAsyst mode under nitrogen, and
an Olympus BX-51 optical microscope equipped with a Linkam THMS 600 hot stage. To
facilitate a clear mapping of the surface topography and electrical properties, PCDTBT/PEG
blend films were washed by dipping the samples into hot acetone (e.g., at 50 ◦C for 5 s)
to selectively remove the PEG regions. The conductivity of the PCDTBT structures was
collected in the PeakForce Tunneling AFM mode (PF-TUNA).

3. Results and Discussion

In Figure 1a, a topographical image of a 0.5 wt% PCDTBT (Mn = 16.2 kg/mol)/PEG
(Mn = 35 kg/mol) (1:1) blend film exhibits a morphology of islands and peninsulas. In
order to investigate the structures of the PCDTBT, a washing experiment was carried out
by using acetone (a good solvent only for PEG) to selectively remove the PEG phase (see
Figure 1d). After washing, a network consisting of islands connected by nanofibers was
obtained [35,48]. Height distributions for the cross-sections—indicated by the white dashed
lines in Figure 1a,d—are shown in Figure 1b,e, respectively. It is worth emphasizing that
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the PCDTBT aggregate structures (both islands and nanofibers) can be revealed through a
selective washing procedure, as shown in the height distributions. Furthermore, one can
observe nanofibers with dimensions of about 20 nm in width and 5 nm in height. As can
be seen from the histogram of the height distribution shown in Figure 1c,f, the mean height
difference between the PCDTBT aggregate structures and the PCDTBT nanofibers is about
25 nm. This value is larger than the lamellae thickness of PEG (~10 nm), indicating that
PCDTBT molecules did not adsorb flatly on the substrate but rather were aggregated with
each other.
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explained by the fact that excessive PCDTBT molecules tend to form a film and PEG 
crystallizes on the surface of the PCDTBT matrix [35]. 

Figure 1. Morphology of PCDTBT-PEG blend film. (a,b) AFM topographical images of a typical
PCDTBT/PEG (weight ratios of 5/5) blend film and the corresponding washed film after selective
removal of PEG using acetone. (b,e) Height distributions along the white dashed lines in (a,d).
(c,f) Height histograms obtained from the AFM images shown in (a,d). The size of each AFM image
is 3 × 3 µm2.

To better understand the phase separation and the formation of the PCDTBT network,
we first investigated the influence of the weight ratio [39,49,50]. Figure 2a–f shows the AFM
height images of blend films with different weight ratios (PCDTBT/PEG = 2/8, 4/6, 5/5,
6/4, 7/3, and 8/2). The size of each AFM image is 3 × 3 µm2 (Except for Figure 2d, where
the size is 35× 35 µm2). Phase separation can be observed in Figure 2a–e. With the increase
in the PCDTBT component, a phase-separated structure transition from a sea-island to
a continuous structure occurs, which is indicative of a change from a nucleation-growth
mechanism to a spinodal decomposition mechanism in the blend system [34]. Further, in
the case of 8/2 (see Figure 2f), a crystal appears on the surface, which might be explained
by the fact that excessive PCDTBT molecules tend to form a film and PEG crystallizes on
the surface of the PCDTBT matrix [35].
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Figure 2. Effects of weight ratio and concentration on the morphology of blend films. AFM height images of (a–f) initial
blend film and (a1–f1) washed films, each containing weight ratios of 2/8, 4/6, 5/5, 6/4, 7/3, and 8/2. AFM height images
of washed films with a weight ratio of 6/4 in the presence of different concentrations (g) 2.0 wt%, (h) 1.0 wt%, (i) 0.5 wt%,
(j) 0.25 wt%, and (k) 0.1 wt%. (m) The height of the aggregate structures (red) and the width of the nanofibers (blue) as a
function of solution concentration.

AFM height images of the films after the selective removal of the PEG using acetone
are displayed in Figure 2a1–e1. After removing the PEG phase from the blends, a network
consisting of PCDTBT aggregates and nanofibers is revealed, while no fibers (especially
nanofibers) are observed in Figure 2f1. In addition, the pure PCDTBT thin film shows
a similar morphology to that of Figure 2f1 (see Figure S2), indicating that no PCDTBT
nanofibers exist in the initial solution. According to these results, considering that PEG is
a kind of crystalline polymer with relatively higher flexibility than PCDTBT [6,23,43], it
is suggested that the PCDTBT network is formed during the phase separation, which is
driven by the incompatibility of PEG/PCDTBT and the crystallization of PEG.

Figure 2g–k shows the AFM height images of the washed films, which are prepared
by blend films of different concentrations (c = 2.0–0.1 wt%, other concentrations can be
seen in Figure S3). Significant differences in the morphology of PCDTBT aggregates and
nanofibers were observed. As c decreased from 2.0 wt% to 0.1 wt%, both the height of
the PCDTBT aggregates and the width of the nanofibers became smaller (see Figure 2m).
It has been known that the timescale of phase separation increases in blend films that
are spin-coated using more highly concentrated solution because of the higher viscosity
of the solution [51]; this explains the increasing heights of the aggregates and widths of
the nanofibers.

It is imperative to point out that the length of nanofibers decreased with decreasing c,
probably due to the enhanced mobility of the PCDTBT molecules. Especially, for the lowest
c (i.e., 0.1 wt%), only the PCDTBT nanofiber network rather than the PCDTBT aggregates
were found in the washed film (Figure 2k). This morphological change may be caused by
the absorption of a majority of the PEG molecules onto the hydrophilic oxidized silicon
wafers, which may result in an adsorbed PEG monolayer rather than aggregates or crystals
in PEG-rich domains [52]. The crystallization of PEG monolayers was predominately
controlled by the diffusion of PCDTBT molecules leading to the shorter nanofibers [53–55].

Due to mobility and compatibility being sensitive to the molecular weights of poly-
mers [34], PEG and PCDTBT with different molecular weights were blended here. Figure 3a–e
shows the AFM height images of blend films, with weight ratios of 4:6 and the increasing
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molecular weight of PEG from 1 kg/mol to 100 kg/mol. A series of PCDTBT networks
consisting of nanofibers and aggregates with different sizes and densities can be observed
in the resulting films. The average height and density of the PCDTBT aggregates as a
function of the PEG molecular weight were revealed (see Figure 3f). With the increasing
molecular weight of the PEG, the incompatibility of the two blend components increases,
causing that phase separation scale to increase and the PCDTBT aggregates to coarsen
further to form a larger structure [34]. On the other hand, shorter PEG chains diffuse more
rapidly, leading to PCDTBT aggregates becoming more dispersed [38].
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Figure 3. Effects of the molecular weight of PEG and PCDTBT on the morphology of blend films.
AFM height images of the washed films correspond to blend films produced with different molecular
weights of PEG: (a) 1, (b) 4.6, (c) 20, (d) 35, and (e) 100 kg/mol. (f) The plot of the height and
density of PCDTBT aggregates against the Mn of PEG. AFM height images of the washed films
correspond to blend films prepared with PCDTBT molecular weights of (g) 16.2 and (h) 30.0 kg/mol.
(i) Cross-sectional profiles along the dash lines in (g,h). The size of each AFM image is 3 × 3 µm2.

Furthermore, the effect of the molecular weight of the PCDTBT on the phase-separated
morphology was studied. Figure 3g,h show the AFM height images of the washed films
with PCDTBT molecular weights of 16.2 kg/mol and 30.0 kg/mol (weight ratio = 6:4; the
ratios of 4:6 are shown in Figure S4). The corresponding height distributions of the dashed
lines in Figure 3g (red curve) and Figure 3h (green curve) are shown in Figure 3i. The
molecular weight dependencies of the density and width of PCDTBT nanofibers are clearly
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resolved. The resulting porous patterns of lower Mn PCDTBT possessed a morphology
with lower pore density and larger pore diameter. As low molecular weight PCDTBT
expresses lower viscosity and higher diffusivity, the aggregates are more dispersed when
induced by phase separation [56]. Meanwhile, the width of the nanofiber is larger in
Figure 3g, which can be attributed to the decreased viscosity of the low molecular weight
PCDTBT [38].

Temperature also plays an important role for the phase-separated structure, as it
determines the thermodynamic state of the blend system. We thus explored the impact
of the spin-coating temperature (Tsp) on the morphology of films, which spin-coated
from a mixed solution with a polymer concentration of c = 0.5 wt% and a mixing ratio
of 6:4 (PCDTBT/PEG). When Tsp = 50 ◦C, the transition from a continuous to an island
structure was observed. We quote the classical phase separation theory, considering
that the continuous phase-separated morphology (Figure 4a) is driven by the spinodal
decomposition mechanism [57]. With the increase in the temperature, the blend system is
thrust into the metastable region, causing the phase-separated morphology of the island
(Figure 4b) that is controlled by the nucleation-growth mechanism [57].
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Figure 4. Mechanism of the formation of the PCDTBT network. AFM height images of the washed films correspond
to blend films produced at different spin-coating temperatures (Tsp): (a) 20 ◦C and (b) 50 ◦C. AFM height images of the
washed films correspond to blends spin-casted from solutions with different solvents: (c) chlorobenzene and (d) chloroform.
(e,g) AFM height images and (f,h) corresponding TUNA current maps of PCDTBT aggregates and nanofibers. (i,j) AFM
phase images of PCDTBT aggregates and nanofibers. (k) Schematic representation of the formation of PCDTBT aggregates
and nanofibers at various steps.

Since the time-span available for the phase-separation process is determined by the
evaporation rate of the solvent [58], we chose chloroform—another good solvent for both
polymers that has a faster volatilization rate than chlorobenzene—to prepare the blend
solutions. When compared to the sample prepared using chlorobenzene as a solvent
(Figure 4c), fewer nanofibers are observed in the sample obtained from the chloroform
solution (Figure 4d). This is because rapid solvent evaporation occurs during the spin-
coating stage, with less time available for phase separation, thus hindering the self-assembly
of the PCDTBT molecules into nanofibers.
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After the selective removal of PEG, the conductivity of the PCDTBT aggregates
and nanofibers was investigated using the PeakForce TUNA mode AFM. As shown in
Figure 4e,f, the morphology of the PCDTBT aggregates and nanofibers were all reproduced
in the current map of the washed film taken at an applied voltage of 800 mV. That is, the
conductivity of the PCDTBT aggregates and nanofibers was significantly higher than that
of the substrates. Interestingly, the conductivity of the PCDTBT aggregates and nanofibers
decays after heating to 160 ◦C for 30 min under a nitrogen atmosphere, due to the reduc-
tion of the ordered degree (see Figure 4h). As observed in the AFM phase images (see
Figure 4i,j), the PCDTBT fiber-aggregate network showed the physical connection between
aggregates and nanofibers. Therefore, the formation of interconnected pathways is desired
to ensure highly efficient, long-range charge transport.

Based on all the information obtained from the above content, a schematic diagram
of the PCDTBT network formation process is shown in Figure 4k. First, when dropping
the blend solution onto a silicon substrate, PCDTBT and PEG components uniformly
mix in droplets on the substrate. Then as the spin-coating method is manipulated to
fabricate the thin film, the droplets are thrown off and the blends evenly distribute on
the substrate. Meanwhile, with the evaporation of the solvent, phase separation occurs
(driven by an interaction, such as the surface tension between two immiscible polymers)
and subsequently nanofibers and aggregates are formed. Notice that when using deionized
water as the solvent to remove the PEG phase of the blend film, the film can float on
the water, indicating there is a PEG-rich layer between the substrate and the PCDTBT
nanofibers. This can be explained by a better affinity between PEG and substrate.

4. Conclusions

In summary, a PCDTBT conductive network consisting of aggregates and nanofibers
was successfully produced through phase separation of a PCDTBT/PEG blend. The
network was revealed after the selective removal of the PEG regions by using acetone.
The phase-separated morphologies of this blend system were influenced by the blending
conditions (the weight ratio, solution concentration, and molecular weight) and processing
conditions (the substrate temperature and solvent). A transition from a sea-island, phase-
separated structure to a continuous structure was observed when the PCDTBT:PEG weight
ratio was changed from 2:8 to 7:3 or when the substrate temperature decreased from 50 ◦C
to 20 ◦C. Varying the solution concentration from 0.1 wt% to 3.0 wt% led to an increase in
the film thickness and solution viscosity, causing an increase in both the PCDTBT aggregate
height and the nanofiber width. Meanwhile, when the molecular weights of the PEG
and PCDTBT were increased, both the diffusion rate of the molecular chains and the
miscibility of the blends decreased, resulting in larger sizes of PCDTBT aggregates and
denser nanofibers, respectively. However, no nanofibers were observed when using a
solvent with a low boiling point (chloroform), as rapid solvent evaporation shortened
the time available for nanofibers to be induced through phase separation. These results
suggested that the PCDTBT network was induced during the stage of phase separation
and was driven by the incompatibility of PEG/PCDTBT and the crystallization of the PEG.
In addition, the conductivity of the PCDTBT structures obtained from the blend films was
proved through CAFM, giving a bright prospect for its application in devices and also
providing new insight in dealing with highly rigid conjugated polymers, such as PCDTBT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14175071/s1, Figure S1: Molecular chemical structures of PCDTBT and PEG. Figure S2:
AFM height image of pure PCDTBT thin film without post treatment. The size of AFM image is
3 × 3 µm2. Figure S3: AFM height images of PCDTBT/PEG (weight ratio 1:1) the washed films
correspond to blend films produced with solution concentration of (a) 3.0 wt%, (b) and (c) 0.5 wt%.
The size of each AFM image is 3 × 3 µm2. Figure S4: AFM height images of PCDTBT/PEG (weight
ratio 4:6) the washed films correspond to blend films produced with PCDTBT molecular weight of (a)
16.2 kg/mol and (b) 30.0 kg/mol. The size of each AFM image is 3 × 3 µm2.
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