0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2019, 2, 3840–3850. [Google Scholar] [CrossRef]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef] [PubMed]
- Alluri, N.R.; Chandrasekhar, A.; Vivekananthan, V.; Purusothaman, Y.; Selvarajan, S.; Jeong, J.H.; Kim, S.J. Scavenging biomechanical energy using high-performance, flexible BaTiO3 nanocube/PDMS composite films. ACS Sustain. Chem. Eng. 2017, 5, 4730–4738. [Google Scholar] [CrossRef]
- Zeng, Z.; Gai, L.; Wang, X.; Lin, D.; Wang, S.; Luo, H.; Wang, D. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite. Appl. Phys. Lett. 2017, 110, 103501. [Google Scholar] [CrossRef]
- Cheng, K.C.; Chan, H.L.; Choy, C.L.; Yin, Q.; Luo, H.; Yin, Z. Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1177–1183. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Chen, J.J.; Jing, J.C.; Huo, T.; Chen, R.; Jiang, L.; Zhou, Q.; Chen, Z. PMN-PT/Epoxy 1-3 composite based ultrasonic transducer for dual-modality photoacoustic and ultrasound endoscopy. Photoacoustics 2019, 15, 100138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Liu, D.; Zhang, Q.; Wang, W.; Ren, B.; Zhao, X.; Luo, H. Fabrication of angle beam two-element ultrasonic transducers with PMN–PT single crystal and PMN–PT/epoxy 1–3 composite for NDE applications. Sens. Actuators A Phys. 2011, 168, 223–228. [Google Scholar] [CrossRef]
- Das, S.; Biswal, A.K.; Parida, K.; Choudhary, R.; Roy, A. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting. Appl. Surf. Sci. 2018, 428, 356–363. [Google Scholar] [CrossRef]
- Kang, S.W.; Cho, S.Y.; Bu, S.D.; Han, J.K.; Lee, G.J.; Lee, M.K. Effect of the Number of PZT Coatings on the Crystal Structure and Piezoelectric Properties in PZT-CNT Nanocomposites. J. Korean Phys. Soc. 2018, 72, 1209–1213. [Google Scholar] [CrossRef]
- Singh, M.; Singh, J.; Kumar, M.; Kumar, S. Investigations on multiferroic properties of lead free (1-x)BCZT-xCZFMO based particulate ceramic composites. Solid State Sci. 2020, 108, 106380. [Google Scholar] [CrossRef]
- Mane, S.M.; Tirmali, P.M.; Ranjit, B.; Khan, M.; Khan, N.; Tarale, A.N.; Kulkarni, S.B. Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x)(Ba0.8Sr0.2TiO3)-x(Co0.9Ni0.1Fe2O4) multiferroic composite. Solid State Sci. 2018, 81, 43–50. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Paliwal, A.; Tomar, M.; Gupta, V. Multiferroic BFO/BTO multilayer structures based magnetic field sensor. Phys. B Condens. Matter 2019, 571, 1–4. [Google Scholar] [CrossRef]
- Grigalaitis, R.; Petrović, M.V.; Bobić, J.; Dzunuzovic, A.; Sobiestianskas, R.; Brilingas, A.; Stojanović, B.; Banys, J. Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 2014, 40, 6165–6170. [Google Scholar] [CrossRef]
- Jaitanong, N.; Yimnirun, R.; Chaipanich, A. Effect of compressive stress on the ferroelectric hysteresis behavior in 0–3 PMN-PT/cement composites. Ferroelectr. Lett. 2011, 38, 11–17. [Google Scholar] [CrossRef]
- Chaipanich, A.; Rianyoi, R.; Potong, R.; Suriya, W.; Jaitanong, N.; Chindaprasirt, P. Dielectric properties of 2-2 PMN-PT/cement composites. Ferroelectr. Lett. Sect. 2012, 39, 76–80. [Google Scholar] [CrossRef]
- Chaipanich, A.; Jaitanong, N. Effect of PZT particle size on the electromechanical coupling coefficient of 0-3 PZT-cement composites. Ferroelectr. Lett. 2009, 36, 37–44. [Google Scholar] [CrossRef]
- Newnham, R.E.; Amin, A. Smart systems: Microphones, fish farming, and beyond. Chemtech 1999, 29, 38–47. [Google Scholar]
- Xin, C.; Shifeng, H.; Jun, C.; Zongjin, L. Piezoelectric, dielectric, and ferroelectric properties of 0-3 ceramic/cement composites. J. Appl. Phys. 2007, 101, 094110. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramics: I, a dissolution model of formation. J. Am. Ceram. Soc. 2003, 86, 1838–1844. [Google Scholar] [CrossRef]
- Wagh, A.S.; Grover, S.; Jeong, S.Y. Chemically bonded phosphate ceramics: II, warm-temperature process for alumina ceramics. J. Am. Ceram. Soc. 2003, 86, 1845–1849. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramics: III, reduction mechanism and its application to iron phosphate ceramics. J. Am. Ceram. Soc. 2003, 86, 1850–1855. [Google Scholar] [CrossRef]
- Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng. 2017, 45, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.; Mohren, R.; Cillero-Pastor, B.; Shen, Z.; Lacroix, Y.; Guttenplan, A.; Birgani, Z.T.; Eijssen, L.; Luider, T.; van Rijt, S.; et al. Comparative proteomic analysis of human mesenchymal stromal cell behavior on calcium phosphate ceramics with different osteoinductive potential. Mater. Today Bio 2020, 7, 100066. [Google Scholar] [CrossRef]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhenyu, L.; Chunrong, R.; Yuanyuan, W.; Zhichao, H.; Xin, H.; Jie, W.; Mengliang, L.; Qiubai, D.; Khan, K.; et al. Study on solidification properties of chemically bonded phosphate ceramics for cesium radionuclides. Ceram. Int. 2020, 46, 14964–14971. [Google Scholar] [CrossRef]
- Plyushch, A.; Macutkevic, J.; Svirskas, S.; Banys, J.; Plausinaitiene, V.; Bychanok, D.; Maksimenko, S.; Selskis, A.; Sokal, A.; Lapko, K.; et al. Silicon carbide/phosphate ceramics composite for electromagnetic shielding applications: Whiskers vs. particles. Appl. Phys. Lett. 2019, 114, 183105. [Google Scholar] [CrossRef]
- Apanasevich, N.; Sokal, A.; Lapko, K.; Kudlash, A.; Lomonosov, V.; Plyushch, A.; Kuzhir, P.; Macutkevic, J.; Banys, J.; Okotrub, A. Phosphate ceramics- carbon nanotubes composites: Liquid aluminum phosphate vs. solid magnesium phosphate binder. Ceram. Int. 2015, 41, 12147–12152. [Google Scholar] [CrossRef]
- Bychanok, D.; Gorokhov, G.; Meisak, D.; Plyushch, A.; Kuzhir, P.; Sokal, A.; Lapko, K.; Sanchez-Sanchez, A.; Fierro, V.; Celzard, A.; et al. Exploring carbon nanotubes/BaTiO3/Fe3O4 nanocomposites as microwave absorbers. Prog. Electromagn. Res. C 2016, 66, 77–85. [Google Scholar] [CrossRef][Green Version]
- Haily, E.; Bih, L.; Lahmar, A.; Elmarssi, M.; Manoun, B. Effect of BaO–Bi2O3–P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics. Mater. Chem. Phys. 2020, 241, 122434. [Google Scholar] [CrossRef]
- Gittings, J.; Bowen, C.; Turner, I.; Baxter, F.; Chaudhuri, J. Characterisation of ferroelectric-calcium phosphate composites and ceramics. J. Eur. Ceram. Soc. 2007, 27, 4187–4190. [Google Scholar] [CrossRef]
- Rubenis, K.; Zemjane, S.; Vecstaudza, J.; Bitenieks, J.; Locs, J. Densification of amorphous calcium phosphate using principles of the cold sintering process. J. Eur. Ceram. Soc. 2021, 41, 912–919. [Google Scholar] [CrossRef]
- Wang, J.; Luo, P.; Wang, J.; Zhan, L.; Wei, Y.; Zhu, Y.; Yang, S.; Zhang, K. Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram. Int. 2020, 46, 3023–3027. [Google Scholar] [CrossRef]
- Obradovic, N.; Dordevic, N.; Peleš, A.; Filipovic, S.; Mitrić, M.; Pavlović, V.B. The influence of compaction pressure on the density and electrical properties of cordierite-based ceramics. Sci. Sinter. 2015, 47, 15–22. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, H.; Zhang, Z.; Wen, R.; Wang, G.; Mu, J.; Che, H.; Zhang, X. Effects of pressure on densification behaviour, microstructures and mechanical properties of boron carbide ceramics fabricated by hot pressing. Ceram. Int. 2017, 43, 6345–6352. [Google Scholar] [CrossRef]
- Luo, J.; Eitel, R. Aqueous tape casting of Al2O3 for multilayer co-fired ceramic based microfluidic chips with translucent windows. Ceram. Int. 2018, 44, 3488–3491. [Google Scholar] [CrossRef]
- Wongmaneerung, R.; Rittidech, A.; Khamman, O.; Yimnirun, R.; Ananta, S. Processing and properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-based ceramics. Ceram. Int. 2009, 35, 125–129. [Google Scholar] [CrossRef]
- Bellaiche, L.; Vanderbilt, D. Intrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZT. Phys. Rev. Lett. 1999, 83, 1347. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Li, Z.; Li, F. Investigation on the Thermal Stability of Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. Ferroelectrics 2010, 402, 187–192. [Google Scholar] [CrossRef]
- Choi, S.; Shrout, T.R.; Jang, S.; Bhalla, A. Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Mater. Lett. 1989, 8, 253–255. [Google Scholar] [CrossRef]
- Chen, Y.; Or, D. Effects of Maxwell-Wagner polarization on soil complex dielectric permittivity under variable temperature and electrical conductivity. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Gallas, M.; Rosa, A.; Costa, T.; Da Jornada, J. High pressure compaction of nanosize ceramic powders. J. Mater. Res. 1997, 12, 764–768. [Google Scholar] [CrossRef]
- Panelli, R.; Ambrozio Filho, F. A study of a new phenomenological compacting equation. Powder Technol. 2001, 114, 255–261. [Google Scholar] [CrossRef]
- Nelson, S.O. Density-permittivity relationships for powdered and granular materials. IEEE Trans. Instrum. Meas. 2005, 54, 2033–2040. [Google Scholar] [CrossRef]
- Kudrevičius, T.; Plyushch, A.; Ivanov, M.; Svirskas, Š.; Plaušinaitienė, V.; Selskis, A.; Kuzhir, P.; Banys, J. Aqueous tape casting of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films: Production optimization and properties. J. Electroceramics 2021, 1–6. [Google Scholar] [CrossRef]
- Coube, O.; Riedel, H. Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metall. 2000, 43, 123–131. [Google Scholar] [CrossRef]
- Tsantilis, S.; Briesen, H.; Pratsinis, S.E. Sintering time for silica particle growth. Aerosol Sci. Technol. 2001, 34, 237–246. [Google Scholar] [CrossRef]
- Ersoy, N.M.; Aydoğdu, H.M.; Değirmenci, B.Ü.; Çökük, N.; Sevimay, M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater. Odontol. Scand. 2015, 1, 43–50. [Google Scholar] [CrossRef]
- Li, G.; Yang, G.; Li, C.; Li, C. A comprehensive sintering mechanism for thermal barrier coatings-Part III: Substrate constraint effect on healing of 2D pores. J. Am. Ceram. Soc. 2018, 101, 3636–3648. [Google Scholar] [CrossRef]
- Meisak, D.; Macutkevic, J.; Selskis, A.; Kuzhir, P.; Banys, J. Dielectric relaxation spectroscopy and synergy effects in epoxy/MWCNT/Ni@C composites. Nanomaterials 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Santra, R.N.; Mukunda, P.; Nando, G.; Chaki, T. Thermogravimetric studies on miscible blends of ethylene-methyl acrylate copolymer (EMA) and polydimethylsiloxane rubber (PDMS). Thermochim. Acta 1993, 219, 283–292. [Google Scholar] [CrossRef]
- Zhu, J. Prevent Cement Strength Retrogression Under Ultra High Temperature. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 14 November 2019; Available online: https://onepetro.org/SPEADIP/proceedings-pdf/19ADIP/4-19ADIP/D041S119R002/1117384/spe-197739-ms.pdf (accessed on 3 September 2021). [CrossRef]
- Pernites, R.B.; Santra, A.K. Portland cement solutions for ultra-high temperature wellbore applications. Cem. Concr. Compos. 2016, 72, 89–103. [Google Scholar] [CrossRef]
Area | O | Mg | Al | P | Ti | Nb | Pb |
---|---|---|---|---|---|---|---|
1 | 71.26 | 4.41 | 1 | 2.44 | 3.73 | 6.39 | 10.77 |
2 | 53.68 | 46.14 | 0.1 | 0.02 | 0.02 | 0.02 | 0.03 |
Applied Pressure, MPa | 340 | 680 | 904 |
---|---|---|---|
Density, g/cm | 5.48 | 6.10 | 5.94 |
, at 100 kHz, 450 K | 109.5-1.05i | 148.67-1.68i | 147.56-1.41i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plyushch, A.; Mačiulis, N.; Sokal, A.; Grigalaitis, R.; Macutkevič, J.; Kudlash, A.; Apanasevich, N.; Lapko, K.; Selskis, A.; Maksimenko, S.A.; et al. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials 2021, 14, 5065. https://doi.org/10.3390/ma14175065
Plyushch A, Mačiulis N, Sokal A, Grigalaitis R, Macutkevič J, Kudlash A, Apanasevich N, Lapko K, Selskis A, Maksimenko SA, et al. 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials. 2021; 14(17):5065. https://doi.org/10.3390/ma14175065
Chicago/Turabian StylePlyushch, Artyom, Nerijus Mačiulis, Aliaksei Sokal, Robertas Grigalaitis, Jan Macutkevič, Alexander Kudlash, Natalia Apanasevich, Konstantin Lapko, Algirdas Selskis, Sergey A. Maksimenko, and et al. 2021. "0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties" Materials 14, no. 17: 5065. https://doi.org/10.3390/ma14175065
APA StylePlyushch, A., Mačiulis, N., Sokal, A., Grigalaitis, R., Macutkevič, J., Kudlash, A., Apanasevich, N., Lapko, K., Selskis, A., Maksimenko, S. A., Kuzhir, P., & Banys, J. (2021). 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Phosphate Composites: Dielectric and Ferroelectric Properties. Materials, 14(17), 5065. https://doi.org/10.3390/ma14175065