Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag
Abstract
:1. Introduction
2. Objective
3. Materials
4. Test Methods for Characterizing Asphalt Mixtures
5. Results and Discussion
5.1. Moisture Susceptibility
5.2. Rutting Resistance
5.3. Stiffness Modulus
5.4. Fracture Resistance
5.5. Surface Macrotexture
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, C. Climate Change Legislation: Current developments and emerging trends. In Handbook of Climate Change Mitigation; Chen, W.-Y., Seiner, J., Suzuki, T., Maximilian Lackner, M., Eds.; Springer: New York, NY, USA, 2012; Volume 3, pp. 43–87. [Google Scholar]
- European Commission. The Roadmap to a Resource Efficient Europe. 2020. Available online: https://ec.europa.eu/environment/resource_efficiency/pdf/working_paper_part1.pdf (accessed on 13 February 2020).
- EAPA. A European Green Deal: The Asphalt Industry’s Contributions to Climate Neutrality and Preservation of Europe’s Natural Environment. 2019. Available online: https://eapa.org/wp-content/uploads/2019/12/EAPA-manifesto.pdf (accessed on 15 February 2020).
- Pomponi, F.; Moncaster, A. Circular economy for the built environment: A research framework. J. Clean. Prod. 2017, 143, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Erkens, S.; Li, M.; Ma, T.; Liu, X. Sustainable Designed Pavement Materials. Materials 2020, 13, 1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapsoba, N.; Sauzéat, C.; Di Benedetto, H.; Baaj, H.; Ech, M. Behaviour of asphalt mixtures containing reclaimed asphalt pavement and asphalt shingle. Road Mater. Pavement Des. 2014, 15, 330–347. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Hassani, A.; Ganjidoust, H.; Maghanaki, A.A. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manag. Res. 2005, 23, 322–327. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Zhu, J.; Wang, D. Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Mater. Pavement Des. 2013, 14, 679–688. [Google Scholar] [CrossRef]
- Ameri, M.; Hesami, S.; Goli, H. Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Constr. Build. Mater. 2013, 49, 611–617. [Google Scholar] [CrossRef]
- Skaf, M.; Manso, J.M.; Aragón, A.; Fuente-Alonso, J.A. EAF slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Yang, C.; Wang, F. Enhancement mechanism of skid resistance in preventive maintenance of asphalt pavement by steel slag based on micro-surfacing. Constr. Build. Mater. 2020, 239, 117870. [Google Scholar] [CrossRef]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; FHWA 2011; Publication No. FHWA-HRT-11-021; United States, Federal Highway Administration, Office of Research, Development, and Technology: McLean, VA, USA, 2011. [Google Scholar]
- Zaumanis, M.; Mallick, R. Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. Int. J. Pavement Eng. 2014, 16, 39–55. [Google Scholar] [CrossRef]
- Watson, D.; Vargas-Nordcbeck, A.; Moore, J.; Jared, D.; Wu, P. Evaluation of the use of reclaimed asphalt pavement in stone matrix asphalt mixtures. Transp. Res. Rec. J. Transp. Res. Board 2008, 2051, 64–70. [Google Scholar] [CrossRef]
- Lin, P.; Liu, X.; Apostolidis, P.; Erkens, S.; Ren, S.; Xu, S.; Scarpas, T.; Huang, W. On the rejuvenator dosage optimization for aged SBS modified bitumen. Constr. Build. Mater. 2021, 271, 121913. [Google Scholar] [CrossRef]
- Subhy, A.; Pires, G.M.; Carrión, A.J.B.; Lo Presti, D.; Airey, G. Binder and mixture fatigue performance of plant-produced road surface course asphalt mixtures with high contents of reclaimed asphalt. Sustainability 2019, 11, 3752. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.A.; Mir, M.S. Use of reclaimed asphalt pavement (RAP) in warm mix asphalt (WMA) pavements: A review. Innov. Infrastruct. Solut. 2017, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, T.B.; Baaj, H. The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review. Constr. Build. Mater. 2016, 114, 805–816. [Google Scholar] [CrossRef]
- Rossi, C.O.; Caputo, P.; Loise, V.; Ashimova, S.; Teltayev, B.; Sangiorgi, C. A new green rejuvenator: Evaluation of structural changes of aged and recycled bitumens by means of rheology and NMR. RILEM Bookseries 2019, 20, 177–182. [Google Scholar]
- Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Rossi, C.O. The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology. Nanomaterials 2020, 10, 1202. [Google Scholar] [CrossRef]
- Kheradmand, B.; Muniandy, R.; Hua, L.-T.; Yunus, R.; Solouki, A. An overview of the emerging warm mix asphalt technology. Int. J. Pavement Eng. 2014, 15, 79–94. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Picado-Santos, L.G.; Capitao, S.D. Mechanical properties of warm-mix asphalt concrete containing different additives and recycled asphalt as constituents applied in real production conditions. Constr. Build. Mater. 2017, 131, 78–89. [Google Scholar] [CrossRef]
- Stimilli, A.; Virgili, A.; Canestrari, F. Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance. J. Clean. Prod. 2017, 156, 911–922. [Google Scholar] [CrossRef]
- Kusam, A.; Malladi, H.; Tayebali, A.A.; Khosla, N.P. Laboratory evaluation of workability and moisture susceptibility of warm-mix asphalt mixtures containing recycled asphalt pavements. J. Mater. Civ. Eng. 2017, 29, 04016276. [Google Scholar] [CrossRef]
- Lu, X.D.; Saleh, M. Evaluation of warm mix asphalt performance incorporating high RAP content. Can. J. Civ. Eng. 2016, 43, 343–350. [Google Scholar] [CrossRef]
- Moghadas Nejad, F.; Azarhoosh, A.; Hamedi, G.H.; Roshani, H. Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Mater. Pavement Des. 2014, 15, 207–219. [Google Scholar] [CrossRef]
- Georgiou, P.; Loizos, A. Performance evaluation of warm recycled surface mixtures with steel slag. In Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020), Guimarães, Portugal, 9–14 March 2020; pp. 255–265. [Google Scholar]
- Renken, P. Influence of specimen preparation onto the mechanical behaviour of asphalt mixtures. In Proceedings of the 2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain, 20–22 September 2000; pp. 729–735. [Google Scholar]
- Plati, C.; Georgiou, P.; Loizos, A. Influence of different roller compaction modes on asphalt mix performance. Int. J. Pavement Eng. 2016, 17, 64–70. [Google Scholar] [CrossRef]
- Georgiou, P.; Plati, C. Microstructure characterisation of field and laboratory roller compacted asphalt mixtures. Road Mater. Pavement Des. 2021, 22, 942–953. [Google Scholar] [CrossRef]
- Al-Qadi, I.L.; Hasan, O.; Lambros, J.; El Khatib, A.; Singhvi, P.; Khan, T. Testing Protocols to Ensure Performance of High Asphalt Binder Replacement Mixes Using RAP and RAS; FHWA, Research Report, FHWA-ICT-15-017; Illinois Center for Transportation: Urbana, IL, USA, 2015. [Google Scholar]
- Ozer, H.; Al-Qadi, I.L.; Lambros, J.; El-Khatib, A.; Singhvi, P.; Doll, B. Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr. Build. Mater. 2016, 115, 390–401. [Google Scholar] [CrossRef]
- Ling, C.; Swiertz, D.; Mandal, T.; Teymourpour, P.; Bahia, H. Sensitivity of the Illinois Flexibility Index Test to Mixture Design Factors. Transp. Res. Rec. J. Transp. Res. Board 2017, 2631, 153–159. [Google Scholar] [CrossRef]
- Georgiou, P.; Loizos, A. Quality assurance of HMA pavement surface macrotexture: Empirical models vs experimental approach. Int. J. Pavement Res. Technol. 2019, 12, 356–363. [Google Scholar] [CrossRef]
- Zhang, Y.; Bahia, H. Effects of recycling agents (RAs) on rutting resistance and moisture susceptibility of mixtures with high RAP/RAS content. Constr. Build. Mater. 2021, 270, 121369. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Zhang, Y.; Bahia, H. Distribution of mortar film thickness and its relationship to mixture cracking resistance. Int. J. Pavement Eng. 2020. [Google Scholar] [CrossRef]
- Georgiou, P.; Loizos, A. Environmental assessment of warm mix asphalt incorporating steel slag and high reclaimed asphalt for wearing courses: A case study. Road Mater. Pavement Des. 2021, 22 (Suppl. 1), S662–S671. [Google Scholar] [CrossRef]
Properties | Fractions 12/16 mm, 4/12 mm |
---|---|
Grading category | Gc90/10 |
Volume stability | V3.5 |
Flakiness index | FI10 |
Resistance to fragmentation Resistance to wear | LA20 MDE10 |
Resistance to abrasion | AAV10 |
Resistance to polishing | PSV62 |
Parameters | HMA | WMA-25RA | WMA-40RA | WMA-50RA |
---|---|---|---|---|
Mean (Standard Deviation) | ||||
Wheel tracking slope (WTSAIR) (mm/103 cycles) | 0.032 (0.003) | 0.037 (0.013) | 0.032 (0.0001) | 0.030 (0.003) |
Proportional rut depth (PRDAIR) (%) | 3.63 (0.04) | 4.60 (0.57) | 3.69 (0.02) | 3.90 (0.28) |
Rut depth (RDAIR) (mm) | 1.45 (0.01) | 1.84 (0.23) | 1.48 (0.01) | 1.56 (0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgiou, P.; Loizos, A. Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag. Materials 2021, 14, 4938. https://doi.org/10.3390/ma14174938
Georgiou P, Loizos A. Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag. Materials. 2021; 14(17):4938. https://doi.org/10.3390/ma14174938
Chicago/Turabian StyleGeorgiou, Panos, and Andreas Loizos. 2021. "Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag" Materials 14, no. 17: 4938. https://doi.org/10.3390/ma14174938
APA StyleGeorgiou, P., & Loizos, A. (2021). Characterization of Sustainable Asphalt Mixtures Containing High Reclaimed Asphalt and Steel Slag. Materials, 14(17), 4938. https://doi.org/10.3390/ma14174938