Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Graphene Quality
3.2. Hybrid TCE Optical Performance
3.3. Hybrid TCE Electrical Performance
3.4. Solar-Cells Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamamoto, K.; Yoshikawa, K.; Uzu, H.; Adachi, D. High-efficiency heterojunction crystalline Si solar cells. Jpn. J. Appl. Phys. 2018, 57, 08RB20. [Google Scholar] [CrossRef]
- Cruz, A.; Ruske, F.; Eljarrat, A.; Michalowski, P.P.; Morales-Vilches, A.B.; Neubert, S.; Wang, E.-C.; Koch, C.T.; Szyszka, B.; Schlatmann, R.; et al. Influence of Silicon Layers on the Growth of ITO and AZO in Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2020, 10, 703–709. [Google Scholar] [CrossRef]
- Wang, E.-C.; Morales-Vilches, A.B.; Neubert, S.; Cruz, A.; Schlatmann, R.; Stannowski, B. A simple method with analytical model to extract heterojunction solar cell series resistance components and to extract the A-Si:H(i/p) to transparent conductive oxide contact resistivity. In Proceedings of the 9th International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2019, Leuven, Belgium, 8–10 April 2019; p. 6. [Google Scholar]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, L.; Bobeico, E.; Della Noce, M.; Mercaldo, L.V.; Usatii, I.; Delli Veneri, P.; Bianco, G.V.; Sacchetti, A.; Bruno, G. Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells. Appl. Surf. Sci. 2020, 525, 146443. [Google Scholar] [CrossRef]
- Liu, J.; Yi, Y.; Zhou, Y.; Cai, H. Highly Stretchable and Flexible Graphene/ITO Hybrid transparent electrode. Nanoscale Res. Lett. 2016, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, S.; Molinero, A.; Sanz, D.; Gonzalez, J.P.; Cruz, M.; Gandia, J.J.; Carabe, J. Graphene-Based Contacts for Optoelectronic Devices. Micromachines 2020, 11, 919. [Google Scholar] [CrossRef] [PubMed]
- Graphenea. Available online: https://www.graphenea.com/ (accessed on 26 July 2021).
- Demaurex, B.; De Wolf, S.; Descoeudres, A.; Charles Holman, Z.; Ballif, C. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering. Appl. Phys. Lett. 2012, 101, 171604. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C.K.; Shen, Z.; Thong, J.T. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 2010, 6, 195–200. [Google Scholar] [CrossRef] [PubMed]
- das-Nano. Available online: https://www.das-nano.com/onyx/ (accessed on 26 July 2021).
- Ladrón, E.A.; Chudzik, M.; Zorzano, A.L.; Salinas, D.E.; Arroyo, L.E.H.; Elorza, A.Z. Quality Inspection of Thin Film Materials. Patent Number WO/2016/102003., 30 June 2016. [Google Scholar]
- Cultrera, A.; Serazio, D.; Zurutuza, A.; Centeno, A.; Txoperena, O.; Etayo, D.; Cordon, A.; Redo-Sanchez, A.; Arnedo, I.; Ortolano, M.; et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci. Rep. 2019, 9, 10655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pysch, D.; Mette, A.; Glunz, S.W. A review and comparison of different methods to determine the series resistance of solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 1698–1706. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Le, H.D.; Nguyen, V.C.; Tam Ngo, T.T.; Le, D.Q.; Nguyen, X.N.; Phan, N.M. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 035012. [Google Scholar] [CrossRef]
- Zhu, S.-E.; Yuan, S.; Janssen, G.C.A.M. Optical transmittance of multilayer graphene. Europhys. Lett. 2014, 108, 17007. [Google Scholar] [CrossRef] [Green Version]
- Torres, I.; Fernández, S.; Gandía, J.J.; González, N.; Barrio, R.; De la Cruz, M.; Cárabe, J. Graphene-based transparent electrode incorporated into silicon heterojunction solar cell technology. In Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Lisbon, Portugal, 7–11 September 2020; pp. 478–481. [Google Scholar]
- van Sark, W.G.J.H.M.; Korte, L.; Roca, F. (Eds.) Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Ochoa-Martinez, E.; Gabas, M.; Barrutia, L.; Pesquera, A.; Centeno, A.; Palanco, S.; Zurutuza, A.; Algora, C. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. Nanoscale 2015, 7, 1491–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, S.; Bosca, A.; Pedros, J.; Ines, A.; Fernandez, M.; Arnedo, I.; Gonzalez, J.P.; de la Cruz, M.; Sanz, D.; Molinero, A.; et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancellotti, L.; Polichetti, T.; Ricciardella, F.; Tari, O.; Gnanapragasam, S.; Daliento, S.; Di Francia, G. Graphene applications in Schottky barrier solar cells. Thin Solid Film. 2012, 522, 390–394. [Google Scholar] [CrossRef]
- Bianco, G.V.; Sacchetti, A.; Milella, A.; Grande, M.; D’Orazio, A.; Capezzuto, P.; Bruno, G. Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping. Carbon 2020, 170, 75–84. [Google Scholar] [CrossRef]
TCE | Rw 430–1050 nm (~95% Jsc) | Rw 600–1050 nm (~80% Jsc) |
---|---|---|
ITO | 12.05% | 10.51% |
ITO + 1 GML | 12.76% | 8.65% |
ITO + 2 GML | 12.56% | 7.74% |
ITO + 3 GML | 13.62% | 9.81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, I.; Fernández, S.; Fernández-Vallejo, M.; Arnedo, I.; Gandía, J.J. Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology. Materials 2021, 14, 4833. https://doi.org/10.3390/ma14174833
Torres I, Fernández S, Fernández-Vallejo M, Arnedo I, Gandía JJ. Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology. Materials. 2021; 14(17):4833. https://doi.org/10.3390/ma14174833
Chicago/Turabian StyleTorres, Ignacio, Susana Fernández, Montserrat Fernández-Vallejo, Israel Arnedo, and José Javier Gandía. 2021. "Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology" Materials 14, no. 17: 4833. https://doi.org/10.3390/ma14174833