Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Photocatalysts
2.2. Characterization Techniques
2.3. Photocatalytic Reactions
3. Results and Discussion
3.1. Synthesis and Characterization of TiO2-Supported Subnanometre Ru Particles
3.2. Influence of Ru Nanoparticle Characteristics on Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melchionna, M.; Fornasiero, P. Updates on the Roadmap for Photocatalysis. ACS Catal. 2020, 10, 5493–5501. [Google Scholar] [CrossRef]
- Perović, K.; Dela Rosa, F.M.; Kovačić, M.; Kušić, H.; Štangar, U.L.; Fresno, F.; Dionysiou, D.D.; Bozic, A.L. Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials 2020, 13, 1338. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Taniguchi, Y.; Yoneyama, H.; Tamura, H. Effective Surfaces of Semiconductor Catalysts for Light-Induced Heterogeneous Reactions Evaluated by Simultaneous Photodeposition of Both Oxidation and Reduction Products. J. Phys. Chem. 1983, 87, 768–778. [Google Scholar] [CrossRef]
- Rufus, I.B.; Ramakrishnan, V.; Viswanathan, B.; Kuriacose, J.C. Interface and Surface Analysis of Ru/CdS. J. Mater. Sci. Lett. 1996, 15, 1921–1923. [Google Scholar] [CrossRef]
- Vignolo-González, H.A.; Laha, S.; Jiménez-Solano, A.; Oshima, T.; Duppel, V.; Schützendübe, P.; Lotsch, B.V. Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO2@TiO2 as a Benchmark. Matter 2020, 3, 464–486. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Jędrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced Production of γ-Valerolactone with an Internal Source of Hydrogen on Ca-Modified TiO2 Supported Ru Catalysts. ChemSusChem 2019, 12, 639–650. [Google Scholar] [CrossRef]
- Wang, C.; Shang, Y.; Lu, Y.; Qu, L.; Yao, H.; Li, Z.; Liu, Q. Photoinduced Homogeneous RuO2 Nanoparticles on TiO2 Nanowire Arrays: A High-Performance Cathode toward Flexible Li–CO2 Batteries. J. Power Sources 2020, 475, 1–9. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Nie, Z.; Zhao, Y.; Wang, H. Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors. J. Energy Storage 2021, 38, 102479. [Google Scholar] [CrossRef]
- Salvatore, D.A.; Peña, B.; Dettelbach, K.E.; Berlinguette, C.P. Photodeposited Ruthenium Dioxide Films for Oxygen Evolution Reaction Electrocatalysis. J. Mater. Chem. A 2017, 5, 1575–1580. [Google Scholar] [CrossRef]
- Arimoto, S.; Nakano, H.; Fujita, T.; Tachibana, Y.; Kuwabata, S. Electrocatalytic Activity of Pt and Ru Photodeposited Polyaniline Electrodes for Methanol Oxidation. Electrochemistry 2007, 75, 39–44. [Google Scholar] [CrossRef][Green Version]
- Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials 2018, 11, 2329. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.M.; Disdier, J.; Pichat, P. Photoassisted Platinum Deposition on TiO2 Powder Using Various Platinum Complexes. J. Phys. Chem. 1986, 90, 6028–6034. [Google Scholar] [CrossRef]
- Murcia, J.J.; Navío, J.A.; Hidalgo, M.C. Insights towards the Influence of Pt Features on the Photocatalytic Activity Improvement of TiO2 by Platinisation. Appl. Catal. B Environ. 2012, 126, 76–85. [Google Scholar] [CrossRef]
- Lucena, R.; Fresno, F.; Conesa, J.C. Spectral Response and Stability of In2S3 as Visible Light-Active Photocatalyst. Catal. Commun. 2012, 20, 1–5. [Google Scholar] [CrossRef]
- Hamandi, M.; Berhault, G.; Guillard, C.; Kochkar, H. Reduced Graphene Oxide/TiO2 Nanotube Composites for Formic Acid Photodegradation. Appl. Catal. B Environ. 2017, 209, 203–213. [Google Scholar] [CrossRef]
- Garcia-Muñoz, P.; Dachtler, W.; Altmayer, B.; Schulz, R.; Robert, D.; Seitz, F.; Rosenfeldt, R.; Keller, N. Reaction Pathways, Kinetics and Toxicity Assessment during the Photocatalytic Degradation of Glyphosate and Myclobutanil Pesticides: Influence of the Aqueous Matrix. Chem. Eng. J. 2020, 384, 123315. [Google Scholar] [CrossRef]
- García-Muñoz, P.; Pliego, G.; Zazo, J.A.; Bahamonde, A.; Casas, J.A. Sulfonamides Photoassisted Oxidation Treatments Catalyzed by Ilmenite. Chemosphere 2017, 180, 523–530. [Google Scholar] [CrossRef]
- Belapurkar, A.D.; Kamble, V.S.; Dey, G.R. Photo-Oxidation of Ethylene in Gas Phase and Methanol and Formic Acid in Liquid Phase on Synthesized TiO2 and Au/TiO2 Catalysts. Mater. Chem. Phys. 2010, 123, 801–805. [Google Scholar] [CrossRef]
- Mrowetz, M.; Selli, E. Photocatalytic Degradation of Formic and Benzoic Acids and Hydrogen Peroxide Evolution in TiO2 and ZnO Water Suspensions. J. Photochem. Photobiol. A Chem. 2006, 180, 15–22. [Google Scholar] [CrossRef]
- Muggli, D.S.; Backes, M.J. Two Active Sites for Photocatalytic Oxidation of Formic Acid on TiO2: Effects of H2O and Temperature. J. Catal. 2002, 209, 105–113. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-Electron Singularity in X-Ray Photoemission and X-Ray Line Spectra from Metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.H.; Gale, L.H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Light-Driven Synthesis of Sub-Nanometric Metallic Ru Catalysts on TiO2. Catal. Today 2019, 326, 8–14. [Google Scholar] [CrossRef]
- Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J.M.; Serrano, D.P.; Durrant, J.R.; de la Peña O’Shea, V.A. Unravelling the Effect of Charge Dynamics at the Plasmonic Metal/Semiconductor Interface for CO2 Photoreduction. Nat. Commun. 2018, 9, 4986. [Google Scholar] [CrossRef]
- Herrmann, J.M. Photocatalysis Fundamentals Revisited to Avoid Several Misconceptions. Appl. Catal. B Environ. 2010, 99, 461–468. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef]
- Maeda, K.; Abe, R.; Domen, K. Role and Function of Ruthenium Species as Promoters with TaON-Based Photocatalysts for Oxygen Evolution in Two-Step Water Splitting under Visible Light. J. Phys. Chem. C 2011, 115, 3057–3064. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W.; Al-Sayari, S.A. Synthesis and Photocatalytic Properties of Nanocrystalline Au, Pd and Pt Photodeposited onto Mesoporous RuO2-TiO2 Nanocomposites. Appl. Catal. A Gen. 2012, 431–432, 62–68. [Google Scholar] [CrossRef]
- Tamez Uddin, M.; Nicolas, Y.; Olivier, C.; Toupance, T.; Müller, M.M.; Kleebe, H.-J.; Rachut, K.; Ziegler, J.; Klein, A.; Jaegermann, W. Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. J. Phys. Chem. C 2013, 117, 22098–22110. [Google Scholar] [CrossRef]
Sample | Synthesis Time (h) | Ru wt.% a | Photodeposition Yield (%) b | Ru/Ti at. c | Ru0/(Ru0 + Ruδ+) c | Ru Mean Size (nm) d |
---|---|---|---|---|---|---|
Ru-14 | 7.5 | 0.21 | 42 | 0.013 | 0.48 | 0.7 ± 0.2 |
Ru-28 | 6 | 0.23 | 46 | 0.014 | 0.66 | 0.7 ± 0.2 |
Ru-41 | 2 | 0.20 | 40 | 0.012 | 0.65 | 0.6 ± 0.2 |
Ru-70 | 1 | 0.21 | 42 | 0.011 | 0.85 | 1.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Muñoz, P.; Fresno, F.; Ivanez, J.; Keller, N. Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials 2021, 14, 4799. https://doi.org/10.3390/ma14174799
García-Muñoz P, Fresno F, Ivanez J, Keller N. Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials. 2021; 14(17):4799. https://doi.org/10.3390/ma14174799
Chicago/Turabian StyleGarcía-Muñoz, Patricia, Fernando Fresno, Javier Ivanez, and Nicolas Keller. 2021. "Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions" Materials 14, no. 17: 4799. https://doi.org/10.3390/ma14174799
APA StyleGarcía-Muñoz, P., Fresno, F., Ivanez, J., & Keller, N. (2021). Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials, 14(17), 4799. https://doi.org/10.3390/ma14174799