In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
- Setup 1: Powder material on the substrate,
- Setup 2: Only powder material without the substrate, and
- Setup 3: No powder material on the substrate.
3. Results and Discussion
3.1. Deposition Track Analysis
3.2. Element Identification
3.3. Dependency of Line Intensity on Laser Power
3.4. Spectrum Type Distribution
4. Conclusions
- Spectral element lines have been observed in the laser cladding process.
- Element lines are provided by non-ionised atoms. Lines of ionised atoms have not been found. Cr lines have been observed more frequently compared to Co and Mn lines.
- With increasing laser power, the incidence and peak intensity of element lines increase.
- The observed correlation between the laser power, the powder feed rate, and the scan velocity on the one hand and the line intensity on the other hand opens an interesting aspect: The measurement of a line or spectrum intensity could be used for dynamic process control. A first analysis of cross-sections (compare Figure 5) revealed a certain dependency of the cladding dilution and the type of observed spectrum. Extensive investigations on this aspect will be carried out in ongoing work. Moreover, the footprint of full spectra may be suitable for an indirect in-line detection or monitoring of the composition of the laser-molten powder material. This approach seems to be promising for avoiding the deposition of non-stoichiometric layers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seo, J.-W.; Kim, J.-C.; Kwon, S.-J.; Jun, H.-K. Effects of laser cladding for repairing and improving wear of rails. Int. J. Precis. Eng. Manuf. 2019, 20, 1207–1217. [Google Scholar] [CrossRef]
- Kotarska, A.; Poloczek, T.; Janicki, D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded inconel 625-based coatings reinforced by TiC particles. Materials 2021, 14, 2225. [Google Scholar] [CrossRef] [PubMed]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of directed energy deposition-based additive manufacturing in repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef] [Green Version]
- Penaranda, X.; Moralejo, S.; Lamikiz, A.; Figueras, J. An adaptive laser cladding methodology for blade tip repair. Int. J. Adv. Manuf. Technol. 2017, 92, 4337–4343. [Google Scholar] [CrossRef]
- Lee, H.; Lim, C.H.J.; Low, M.J.; Tham, N.; Murukeshan, V.M.; Kim, Y.-J. Lasers in additive manufacturing: A review. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 307–322. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Progress. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Köhler, H.; Thomy, C.; Vollertsen, F. Contact-less temperature measurement and control with applications to laser cladding. Weld. World 2016, 60, 1–9. [Google Scholar] [CrossRef]
- Buhr, M.; Weber, J.; Wenzl, J.-P.; Möller, M.; Emmelmann, C. Influences of process conditions on stability of sensor controlled robot-based laser metal deposition. Procedia CIRP 2018, 74, 149–153. [Google Scholar] [CrossRef]
- Chua, Z.Y.; Ahn, I.H.; Moon, S.K. Process monitoring and inspection systems in metal additive manufacturing: Status and applications. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 235–245. [Google Scholar] [CrossRef]
- Doubenskaia, M.; Pavlov, M.; Grigoriev, S.; Smurov, I. Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera. Surf. Coat. Technol. 2013, 220, 244–247. [Google Scholar] [CrossRef]
- Bi, G.; Gasser, A.; Wissenbach, K.; Drenker, A.; Poprawe, R. Identification and qualification of temperature signal for monitoring and control in laser cladding. Opt. Lasers Eng. 2006, 44, 1348–1359. [Google Scholar] [CrossRef]
- Song, L.; Mazumder, J. Feedback control of melt pool temperature during laser cladding process. IEEE Trans. Contr. Syst. Technol. 2011, 19, 1349–1356. [Google Scholar] [CrossRef]
- Thawari, N.; Gullipalli, C.; Chandak, A.; Gupta, T. Influence of laser cladding parameters on distortion, thermal history and melt pool behaviour in multi-layer deposition of stellite 6: In-situ measurement. J. Alloys Compound. 2021, 860, 157894. [Google Scholar] [CrossRef]
- Rizzi, D.; Sibillano, T.; Pietro Calabrese, P.; Ancona, A.; Mario Lugarà, P. Spectroscopic, energetic and metallographic investigations of the laser lap welding of AISI 304 using the response surface methodology. Opt. Lasers Eng. 2011, 49, 892–898. [Google Scholar] [CrossRef]
- Kong, F.; Ma, J.; Carlson, B.; Kovacevic, R. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration. Opt. Laser Technol. 2012, 44, 2186–2196. [Google Scholar] [CrossRef]
- Sibillano, T.; Ancona, A.; Berardi, V.; Lugarà, P.M. A real-time spectroscopic sensor for monitoring laser welding processes. Sensors 2009, 9, 3376–3385. [Google Scholar] [CrossRef] [PubMed]
- Norman, P.; Engström, H.; Kaplan, A.F.H. Theoretical analysis of photodiode monitoring of laser welding defects by imaging combined with modelling. J. Phys. D Appl. Phys. 2008, 41, 195502. [Google Scholar] [CrossRef]
- Huber, S. In-situ-Legierungs Bestimmung beim Laserstrahlschweißen. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2014. [Google Scholar]
- Vetter, K.; Murken, N.; Winkel, T.; Freiße, H.; Bohlen, A.; Vollertsen, F. Qualitätssicherung mittels Spektroskopie bei der laserbasierten experimentellen Werkstoffentwicklung. Werkst. Fert. 2020, 1, 27–30. [Google Scholar]
- Montazeri, M.; Nassar, A.R.; Stutzman, C.B.; Rao, P. Heterogeneous sensor-based condition monitoring in directed energy deposition. Addit. Manuf. 2019, 30, 100916. [Google Scholar] [CrossRef]
- Nassar, A.R.; Spurgeon, T.J.; Reutzel, E.W. Sensing Defects During Directed-Energy Additive Manufacturing of Metal Parts Using Optical Emissions Spectroscopy. In Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium an Additive Manufacturing Conference, Austin, TX, USA, 4–6 August 2014. [Google Scholar]
- Stutzman, C.B.; Nassar, A.R.; Reutzel, E.W. Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality. Addit. Manuf. 2018, 21, 333–339. [Google Scholar] [CrossRef]
- Bartkowiak, K. Direct laser deposition process within spectrographic analysis in situ. Phys. Procedia 2010, 5, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Kisielewicz, A.; Sadeghi, E.; Sikström, F.; Christiansson, A.-K.; Palumbo, G.; Ancona, A. In-process spectroscopic detection of chromium loss during directed energy deposition of alloy 718. Mater. Des. 2020, 186, 108317. [Google Scholar] [CrossRef]
- Song, L.; Mazumder, J. Real time Cr measurement using optical emission spectroscopy during direct metal deposition process. IEEE Sens. J. 2012, 12, 958–964. [Google Scholar] [CrossRef]
- Shin, J.; Mazumder, J. Composition monitoring using plasma diagnostics during direct metal deposition (DMD) process. Opt. Laser Technol. 2018, 106, 40–46. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C. Real-time monitoring of chemical composition in nickel-based laser cladding layer by emission spectroscopy analysis. Materials 2019, 12, 2367. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Huang, W.; Han, X.; Mazumder, J. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing. IEEE Trans. Ind. Electron. 2017, 64, 633–642. [Google Scholar] [CrossRef]
- Sdvizhenskii, P.A.; Lednev, V.N.; Asyutin, R.D.; Grishin, M.Y.; Tretyakov, R.S.; Pershin, S.M. Online laser-induced breakdown spectroscopy for metal-particle powder flow analysis during additive manufacturing. J. Anal. At. Spectrom. 2020, 35, 246–253. [Google Scholar] [CrossRef]
- Ohnesorge, A. Bestimmung des Aufmischungsgrades beim Laser-Pulver-Auftragschweißen Mittels Laserinduzierter Plasmaspektroskopie (LIPS). Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 2008. [Google Scholar]
- Liu, S.; Zhang, Y.; Kovacevic, R. Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process. Lasers Manuf. Mater. Process. 2015, 2, 199–218. [Google Scholar] [CrossRef] [Green Version]
- Black, D.L.; McQuay, M.Q. Laser-based particle measurements of spherical and nonspherical particles. Int. J. Multiph. Flow 2001, 27, 1333–1362. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database 78. 1999. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 6 April 2021).
- Gaydon, A.G.; Hurle, I.R. Temperature measurements of shock waves and detonations by spectrum-line reversal III. Observations with chromium lines. Proc. R. Soc. Lond. A 1961, 262, 38–50. [Google Scholar] [CrossRef]
- Koch, S.; Garen, W.; Müller, M.; Neu, W. Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS). Appl. Phys. A 2004, 79, 1071–1073. [Google Scholar] [CrossRef]
- Meggers, W.F.; Corliss, C.H.; Scribner, B.F. Tables of Spectral-Line Intensities; National Bureau of Standards: Gaithersburg, MD, USA, 1975. [Google Scholar]
- Wallace, L.; Hinkle, K. THE 236.6–5400.0 nm SPECTRUM OF Cr I. Astrophys. J. 2009, 700, 720–726. [Google Scholar] [CrossRef]
- Allende Prieto, C.; García López, R.J. A catalogue of accurate wavelengths in the optical spectrum of the Sun. Astron. Astrophys. Suppl. Ser. 1998, 131, 431–433. [Google Scholar] [CrossRef]
- Graf, T.; Berger, P.; Weber, R.; Hügel, H.; Heider, A.; Stritt, P. Analytical expressions for the threshold of deep-penetration laser welding. Laser Phys. Lett. 2015, 12, 56002. [Google Scholar] [CrossRef]
- Puthiyaveettil, N.; Kidangan, R.; Unnikrishnakurup, S.; Krishnamurthy, C.V.; Ziegler, M.; Myrach, P.; Balasubramaniam, K. Numerical Study of Laser Line Thermography for Crack Detection at High Temperature. In Proceedings of the 2018 International Conference on Quantitative InfraRed Thermography, Berlin, Germany, 25–29 June 2018; QIRT Council: Berlin, Germany. [Google Scholar]
- Davaji, B.; Richie, J.E.; Lee, C.H. Microscale direct measurement of localized photothermal heating in tissue-mimetic hydrogels. Sci. Rep. 2019, 9, 6546. [Google Scholar] [CrossRef] [PubMed]
Parameter Set | Setup | Laser Power (W) | Scan Velocity (m/min) | Powder Feed Rate (g/min) | Working Distance (mm) |
---|---|---|---|---|---|
1 | 1 | 1200 | 1 | 12 | 13 |
2 | 100 | ||||
3 | 0 | 13 | |||
2 | 1 | 1500 | 1.25 | 15 | 13 |
2 | 100 | ||||
3 | 0 | 13 | |||
3 | 1 | 1800 | 1.5 | 18 | 13 |
2 | 100 | ||||
3 | 0 | 13 | |||
4 | 1 | 2100 | 1.75 | 21 | 13 |
2 | 100 | ||||
3 | 0 | 13 | |||
5 | 1 | 2400 | 2 | 24 | 13 |
2 | 100 | ||||
3 | 0 | 13 |
Material | C | Si | Mn | Cr | Mo | Ni | Al | Co | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
(wt.%) | ||||||||||
Substrate (S235) | 0.10 | 0.19 | 1.02 | 0.03 | 0.01 | 0.03 | 0.03 | 0.01 | 0.02 | 98.56 |
Powder (MetcoClad21) | 3.49 | 0.88 | 0.74 | 25.21 | 4.93 | 3.10 | - | 61.65 | - | - |
Peak No. | Observed Wavelength (nm) | Element Line (nm) | Line Ref. | |
---|---|---|---|---|
1 | 403.2 | 403.076 (Mn I) | 0–24,802.25 | [37] |
403.307 (Mn I) | 0–24,788.05 | |||
2 | 411.9 | 411.877 (Co I) | 8460.81–32,733.07 | |
412.132 (Co I) | 7442.41–31,699.69 | |||
3 | 425.1 | 425.43517 (Cr I) | 0–23,498.8156 | [38] |
4 | 427.4 | 427.48117 (Cr I) | 0–23,386.3419 | |
5 | 429.0 | 428.97307 (Cr I) | 0–23,305.0026 | |
6 | 465.2 | 465.1291 (Cr I) | 7927.441–29,420.8645 | [39] |
7 | 520.6 | 520.44981 (Cr I) | 7593.1484–26,801.9009 | [38] |
520.60229 (Cr I) | 7593.1484–26,796.2691 | |||
520.84094 (Cr I) | 7593.1484–26,787.464 | |||
8 | 526.5 | 526.4153 (Cr I) | 7810.7795–26,801.9009 | |
526.57143 (Cr I) | 7810.7795–26,796.2691 | |||
9 | 529.8 | 529.66905 (Cr I) | 7927.441–26,801.9009 | |
529.82715 (Cr I) | 7927.4–26,796.3 | |||
530.07451 (Cr I) | 7927.4–26,787.5 | |||
10 | 534.8 | 534.57959 (Cr I) | 8095.2–26,796.3 | |
534.83141 (Cr I) | 8095.2–26,787.5 | |||
11 | 540.9 | 540.97834 (Cr I) | 8307.6–26,787.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, M.; Huke, P.; Gerhard, C.; Partes, K. In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy. Materials 2021, 14, 4401. https://doi.org/10.3390/ma14164401
Schmidt M, Huke P, Gerhard C, Partes K. In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy. Materials. 2021; 14(16):4401. https://doi.org/10.3390/ma14164401
Chicago/Turabian StyleSchmidt, Malte, Philipp Huke, Christoph Gerhard, and Knut Partes. 2021. "In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy" Materials 14, no. 16: 4401. https://doi.org/10.3390/ma14164401
APA StyleSchmidt, M., Huke, P., Gerhard, C., & Partes, K. (2021). In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy. Materials, 14(16), 4401. https://doi.org/10.3390/ma14164401