A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna
Abstract
:1. Introduction
2. Design of Negative Permittivity Metamaterials (NPMMs)
3. Microstrip Patch Antenna Loaded with Negative Permittivity Metamaterials
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε and μ. Physic Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Asl, A.B.; Pourkhalil, D.; Rostami, A.; Mirtaghioglu, H. A perfect electrically tunable graphene-based metamaterial absorber. J. Comput. Electron. 2021, 20, 864–872. [Google Scholar]
- Singh, R.K.; Gupta, A. A wrenched-square shaped polarization independent and wide angle stable ultra-thin metamaterial absorber for s-band, x-band and ku-band applications. AEU Int. J. Electron. Commun. 2021, 132, 153648. [Google Scholar] [CrossRef]
- Zhang, X.M.; Liu, H.X.; Li, L. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting. Appl. Phys. Lett. 2017, 111, 1–5. [Google Scholar] [CrossRef]
- Zhong, H.T.; Yang, X.X.; Tan, C.; Yu, K. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Appl. Phys. Lett. 2016, 109, 253904. [Google Scholar] [CrossRef]
- Duan, X.; Chen, X.; Zhou, Y.H.; Zhou, L.; Hao, S.J. Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1617–1621. [Google Scholar] [CrossRef]
- Aldhaeebi, M.A.; Almoneef, T.S. Planar dual polarized metasurface array for microwave energy harvesting. Electronics 2020, 9, 1985. [Google Scholar] [CrossRef]
- Danila, O.; Manaila-Maximean, D. Bifunctional metamaterials using spatial phase gradient architectures: Generalized reflection and refraction considerations. Materials 2021, 14, 2201. [Google Scholar] [CrossRef]
- Danila, O. Spectroscopic assessment of a simple hybrid si-Au cell metasurface-based sensor in the mid-infrared domain. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107209. [Google Scholar] [CrossRef]
- Danila, O. Polyvinylidene fluoride-based metasurface for high-quality active switching and spectrum shaping in the terahertz g-band. Polymers 2021, 13, 1860. [Google Scholar] [CrossRef] [PubMed]
- James, J.R.; Hall, P.S. Handbook of Microstrip Antennas. In Handbook of Microstrip Antennas; Institution of Engineering and Technology: London, UK, 1989; pp. 3–17. [Google Scholar]
- Nasimuddin, N.; Chen, Z.N.; Qing, X. Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular microstrip antenna. IEEE Antennas Propag. Mag. 2016, 58, 39–46. [Google Scholar] [CrossRef]
- Singh, A.K.; Abegaonkar, M.P.; Koul, S.K. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2388–2391. [Google Scholar] [CrossRef]
- Arora, C.; Pattnaik, S.S.; Baral, R.N. Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array. Int. J. Microw. Wirel. Technol. 2018, 10, 318–327. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Li, S. High refractive index metamaterial superstrate for microstrip patch antenna performance improvement. Front. Phys. 2020, 8, 406. [Google Scholar] [CrossRef]
- Borazjani, O.; Naser-Moghadasi, M.; Rashed-Mohassel, J.; Sadeghzadeh, R.A. Design and fabrication of a new high gain multilayer negative refractive index metamaterial antenna for X-band applications. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22284. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhao, X.P. Enhanced patch antenna performances using dendritic structure metamaterials. Microw. Opt. Technol. Lett. 2010, 51, 1732–1738. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhao, X.P. High gain patch antenna with composite right-left handed structure and dendritic cell metamaterials. J. Infrared Millim. Terahertz Waves 2010, 31, 455–468. [Google Scholar] [CrossRef]
- Zhou, B.; Cui, T.J. Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 326–329. [Google Scholar] [CrossRef]
- Yang, W.; Wang, H.; Che, W.; Wang, J. A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 769–772. [Google Scholar] [CrossRef]
- Cao, W.; Hong, W. Bandwidth and gain enhancement for single-fed compact microstrip antenna by loading with parasitical patches. In Proceedings of the IEEE International Conference on Microwave & Millimeter Wave Technology, Beijing, China, 5–8 June 2016. [Google Scholar]
- Pendry, J.B.; Holden, A.; Stewart, W.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B.; Smith, D.R. Reversing light with negative refraction. Phys. Today 2004, 57, 37–43. [Google Scholar] [CrossRef]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Grzegorczyk, T.M.; Wu, B.I.; Pacheco, J.; Kong, J.A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 2004, 70, 016608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Center Frequency | Gain | HPBW | Directivity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R/mm | g/mm | MPA/dB | MPA Loaded with NPMMs/dB | MPA | MPA Loaded with NPMMs | MPA | MPA Loaded with NPMMs | |||
1.5 GHz | 120 | 9 | 6.24 | 8.22 | 4.63 | 10.32 | ||||
3.5 GHz | 45 | 7 | 6.40 | 8.96 | 4.87 | 11.15 | ||||
5 GHz | 34 | 5.5 | 6.55 | 8.98 | 7.5 | 13.08 | ||||
8.4 GHz | 22 | 3 | 6.82 | 8.3 | 7.81 | 7.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, W.-H.; Guo, Y.; Zhao, X.-P. A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna. Materials 2021, 14, 4398. https://doi.org/10.3390/ma14164398
Hui W-H, Guo Y, Zhao X-P. A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna. Materials. 2021; 14(16):4398. https://doi.org/10.3390/ma14164398
Chicago/Turabian StyleHui, Wei-Hua, Yao Guo, and Xiao-Peng Zhao. 2021. "A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna" Materials 14, no. 16: 4398. https://doi.org/10.3390/ma14164398
APA StyleHui, W.-H., Guo, Y., & Zhao, X.-P. (2021). A Simple Linear-Type Negative Permittivity Metamaterials Substrate Microstrip Patch Antenna. Materials, 14(16), 4398. https://doi.org/10.3390/ma14164398