Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings
Abstract
:1. Introduction
2. Numerical Methods and Identification of Material Parameters
2.1. Smoothed-Particle Hydrodynamics (SPH)
2.2. Modeling Metal Plasticity
2.2.1. Johnson–Cook (JC) Model
2.2.2. Cowper-Symonds (CS) Modification of the JC Model
2.2.3. Rusinek–Klepaczko (RK) Model
2.3. Modeling Damage Accumulation of Metals
2.3.1. Johnson–Cook Fracture Criterion (JCf)
2.3.2. Lemaitre Fracture Criterion (LEf)
2.3.3. Fracture Criterion Due to Dolinski and Rittel (DRf)
2.4. Damage Accumulation under Different Triaxialities
2.5. Modifying the Yield Strength Due to Damage
2.6. Parameter Estimation for the JC and RK Plasticity Model
2.7. Other Modelling Aspects
3. Case Setup and Review of Experiment
4. Numerical Results
4.1. Overview of the Numerical Simulations
- the description of material imperfections with a randomised initial damage distribution,
- the modelling of damage mechanics,
- the improvement of the accuracy of the plasticity algorithm with an iterative stress solver,
- the effect of a triaxiality based damage cutoff criterion, and
- the range of applications for different combinations of plasticity models and fracture criteria and all aspect ratios of the ring.
4.2. Randomisation of the Initial Damage
4.3. Coupling of Plasticity and Fracture Model
4.4. Newton–Raphson Iterative Solver in the Plasticity Algorithm
4.5. Modifications of the Fracture Criterion
4.6. Plasticity and Fracture Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grady, D.; Kipp, M.; Benson, D. Energy and Statistical Effects in the Dynamic Fragmentation of Metal Rings; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1984.
- Meulbroek, J.; Ramesh, K.; Swaminathan, P.; Lennon, A. CTH simulations of an expanding ring to study fragmentation. Int. J. Impact Eng. 2008, 35, 1661–1665. [Google Scholar] [CrossRef]
- Zhang, H.; Ravi-Chandar, K. On the dynamics of localization and fragmentation—IV. Expansion of Al 6061-O tubes. Int. J. Fract. 2010, 163, 41–65. [Google Scholar] [CrossRef]
- De Vuyst, T.; Vignjevic, R. Total Lagrangian SPH modelling of necking and fracture in electromagnetically driven rings. Int. J. Fract. 2013, 180, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Olovsson, L.; Limido, J.; Lacome, J.L.; Hanssen, A.G.; Petit, J. Modeling fragmentation with new high order finite element technology and node splitting. EPJ Web Conf. EDP Sci. 2015, 94, 04050. [Google Scholar] [CrossRef] [Green Version]
- Mott, N.F. Fragmentation of shell cases. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 189, 300–308. [Google Scholar]
- Becker, R. Ring fragmentation predictions using the Gurson model with material stability conditions as failure criteria. Int. J. Solids Struct. 2002, 39, 3555–3580. [Google Scholar] [CrossRef]
- Mercier, S.; Molinari, A. Linear Stability Analysis of Multiple Necking in Rapidly Expanded Thin Tube; EDP Sciences: Porto, Portugal, 2003; Volume 110, pp. 287–292. [Google Scholar] [CrossRef]
- Zhou, F.; Molinari, J.; Ramesh, K. An elastic-visco-plastic analysis of ductile expanding ring. Int. J. Impact Eng. 2006, 33, 880–891. [Google Scholar] [CrossRef]
- Zhou, F.; Molinari, J.F.; Ramesh, K. Analysis of the brittle fragmentation of an expanding ring. Comput. Mater. Sci. 2006, 37, 74–85. [Google Scholar] [CrossRef]
- Zhou, F.; Molinari, J.F.; Ramesh, K. Characteristic fragment size distributions in dynamic fragmentation. Appl. Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Rusinek, A.; Zaera, R. Finite element simulation of steel ring fragmentation under radial expansion. Int. J. Impact Eng. 2007, 34, 799–822. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ravi-Chandar, K. On the dynamics of necking and fragmentation—II. Effect of material properties, geometrical constraints and absolute size. Int. J. Fract. 2008, 150, 3. [Google Scholar] [CrossRef]
- Levy, S.; Molinari, J.; Vicari, I.; Davison, A. Dynamic fragmentation of a ring: Predictable fragment mass distributions. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010, 82. [Google Scholar] [CrossRef]
- Jones, D.; Eakins, D.; Savinykh, A.; Razorenov, S. The effects of axial length on the fracture and fragmentation of expanding rings. EPJ Web Conf. EDP Sci. 2012, 26, 01032. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.; Vadillo, G.; Fernández-Sáez, J.; Molinari, A. Identification of the critical wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates. J. Mech. Phys. Solids 2013, 61, 1357–1376. [Google Scholar] [CrossRef] [Green Version]
- El Maï, S.; Mercier, S.; Petit, J.; Molinari, A. Towards the Prediction of Multiple Necking during Dynamic Extension of Round Bar: Linear Stability Approach Versus Finite Element Calculations; Institute of Physics Publishing: Seattle, WA, USA, 2014; Volume 500. [Google Scholar] [CrossRef] [Green Version]
- Vocialta, M.; Molinari, J.F. Influence of internal impacts between fragments in dynamic brittle tensile fragmentation. Int. J. Solids Struct. 2015, 58, 247–256. [Google Scholar] [CrossRef]
- Vocialta, M.; Richart, N.; Molinari, J.F. 3D dynamic fragmentation with parallel dynamic insertion of cohesive elements. Int. J. Numer. Methods Eng. 2017, 109, 1655–1678. [Google Scholar] [CrossRef]
- Vaz-Romero, A.; Mercier, S.; Rodríguez-Martínez, J.; Molinari, A. A comparative study of the dynamic fragmentation of nonlinear elastic and elasto-plastic rings: The roles of stored elastic energy and plastic dissipation. Mech. Mater. 2019, 132, 134–148. [Google Scholar] [CrossRef]
- De Vuyst, T.; Vignjevic, R.; Campbell, J.; Klavzar, A.; Seidl, M. A study of the effect of aspect ratio on fragmentation of explosively driven cylinders. Procedia Eng. 2017, 204, 194–201. [Google Scholar] [CrossRef]
- Becker, M.; Seidl, M.; de Vuyst, T.; Mehl, M.; Souli, M. Numerical and experimental evaluation of natural fragmentation of explosively driven cylinders rings. In Proceedings of the Light-Weight Armor Group Symposium 2019, Roubaix, France, 8–9 October 2019. [Google Scholar]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Libersky, L.D.; Petschek, A.G. Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method; Trease, H.E., Fritts, M.F., Crowley, W.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 248–257. [Google Scholar]
- Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahdadi, F.A. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response. J. Comput. Phys. 1993, 109, 67–75. [Google Scholar] [CrossRef]
- Swegle, J.; Hicks, D.; Attaway, S. Smoothed Particle Hydrodynamics Stability Analysis. J. Comput. Phys. 1995, 116, 123–134. [Google Scholar] [CrossRef]
- Vignjevic, R.; Reveles, J.R.; Campbell, J. SPH in a total Lagrangian formalism. CMC Tech. Sci. Press 2006, 4, 181. [Google Scholar]
- Maurel, B.; Combescure, A. An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Methods Eng. 2008, 76, 949–971. [Google Scholar] [CrossRef]
- Islam, M.R.I.; Shaw, A. Numerical modelling of crack initiation, propagation and branching under dynamic loading. Eng. Fract. Mech. 2020, 224, 106760. [Google Scholar] [CrossRef] [Green Version]
- Shishova, E.; Spreng, F.; Hamann, D.; Eberhard, P. Tracking of material orientation in updated Lagrangian SPH. Comput. Part. Mech. 2019, 6, 449–460. [Google Scholar] [CrossRef]
- Mohseni-Mofidi, S.; Bierwisch, C. Application of hourglass control to Eulerian smoothed particle hydrodynamics. Comput. Part. Mech. 2020, 8, 51–67. [Google Scholar] [CrossRef]
- Monaghan, J.J.; Gingold, R.A. Shock simulation by the particle method SPH. J. Comput. Phys. 1983, 52, 374–389. [Google Scholar] [CrossRef]
- Vuyst, T.D.; Kong, K.; Djordjevic, N.; Vignjevic, R.; Campbell, J.; Hughes, K. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones. J. Phys. Conf. Ser. 2016, 734, 032074. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Macdougall, D. Determination of the plastic work converted to heat using radiometry. Exp. Mech. 2000, 40, 298–306. [Google Scholar] [CrossRef]
- Nahshon, K.; Pontin, M.; Evans, A.; Hutchinson, J.; Zok, F. Dynamic shear rupture of steel plates. J. Mech. Mater. Struct. 2007, 2, 2049–2066. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M. Dynamic Behavior of Materials; J. Wiley and Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Lee, W.S.; Yeh, G.W. The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions. J. Mater. Process. Technol. 1997, 71, 224–234. [Google Scholar] [CrossRef]
- Klepaczko, J. Thermally activated flow and strain rate history effects for some polycrystalline FCC metals. Mater. Sci. Eng. 1975, 18, 121–135. [Google Scholar] [CrossRef]
- Peleg, M.; Normand, M.D.; Corradini, M.G. The Arrhenius equation revisited. Crit. Rev. Food Sci. Nutr. 2012, 52, 830–851. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. Trans. ASME J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Dolinski, M.; Rittel, D.; Dorogoy, A. Modeling adiabatic shear failure from energy considerations. J. Mech. Phys. Solids 2010, 58, 1759–1775. [Google Scholar] [CrossRef]
- Osovski, S.; Rittel, D.; Landau, P.; Venkert, A. Microstructural effects on adiabatic shear band formation. Scr. Mater. 2012, 66, 9–12. [Google Scholar] [CrossRef]
- Rittel, D.; Kidane, A.; Alkhader, M.; Venkert, A.; Landau, P.; Ravichandran, G. On the dynamically stored energy of cold work in pure single crystal and polycrystalline copper. Acta Mater. 2012, 60, 3719–3728. [Google Scholar] [CrossRef]
- Dolinski, M.; Rittel, D. Experiments and modeling of ballistic penetration using an energy failure criterion. J. Mech. Phys. Solids 2015, 83, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Rusinek, A.; Rodríguez-Martírnez, J.; Klepaczko, J.; Pȩcherski, R. Analysis of thermo-visco-plastic behaviour of six high strength steels. Mater. Des. 2009, 30, 1748–1761. [Google Scholar] [CrossRef]
- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Hopkinson, J. Original Papers by the Late John Hopkinson; Cambridge University Press: Cambridge, UK, 1901; Volume 2, pp. 316–324. [Google Scholar]
- Becker, M. Numerical Simulation of Fracture in High-Velocity Impact. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2021. [Google Scholar]
- Kury, J.; Hornig, H.; Lee, E.; McDonnel, J.; Ornellas, D.; Finger, M.; Strange, F.; Wilkins, M. Metal acceleration by chemical explosives. In Fourth Symposium (International) on Detonation; US Government Printing Office: Washington, DC, USA, 1965; pp. 3–13. [Google Scholar]
- Lee, E.; Hornig, H.; Kury, J. Adiabatic Expansion of High Explosive Detonation Products; Technical Report; Univ. of California Radiation Lab. at Livermore: Livermore, CA, USA, 1968. [Google Scholar]
- Dolinski, M.; Merzer, M.; Rittel, D. Analytical formulation of a criterion for adiabatic shear failure. Int. J. Impact Eng. 2015, 85, 20–26. [Google Scholar] [CrossRef]
- Krieg, R.; Key, S.W. Implementation of a time dependent plasticity theory into structural programs. Const. Equ. Viscoplasticity Comput. Eng. Asp. 1976, 20, 125–137. [Google Scholar]
- Krieg, R.D.; Krieg, D. Accuracies of numerical solution methods for the elastic-perfectly plastic model. J. Press. Vessel. Technol. 1977, 99, 510–515. [Google Scholar] [CrossRef]
- Simo, J.C.; Taylor, R.L. Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 1985, 48, 101–118. [Google Scholar] [CrossRef]
- Nemat-Nasser, S. Rate-independent finite-deformation elastoplasticity: A new explicit constitutive algorithm. Mech. Mater. 1991, 11, 235–249. [Google Scholar] [CrossRef]
- Huang, Y.; Mahin, S.A. A cyclic damaged plasticity model: Implementation and applications. In Proceedings of the 10th International LS-DYNA Users Conference, Dearborn, MI, USA, 8–10 June 2008; Volume 14. [Google Scholar]
Parameter | JC Paper | JC Fit | CS Fit | Comment |
---|---|---|---|---|
A [MPa] | 792 | 880 | 880 | static parameter |
B [MPa] | 510 | 833 | 830 | static parameter |
n [-] | 0.26 | 0.26 | 0.26 | static parameter |
m [-] | 1.05 | 0.75 | 0.75 | thermal softening |
C [-] | 0.014 | 0.025 | - | strain rate parameter |
[s] | - | - | strain rate parameter | |
[-] | - | - | 5 | strain rate exponent |
Parameter | Value | Determined By |
---|---|---|
[MPa] | 1600 | static experiment (scaling) |
[-] | 0.12 | static experiment (curvature) |
[-] | numerical parameter | |
[-] | 0.49 | general for steel |
[-] | 0.225 | dynamic experiment |
[MPa] | 352 | dynamic experiment |
m [-] | 1.10 | dynamic experiment |
[-] | 0.0108 | dynamic experiment |
[GPa] | 212 | general for steel |
[-] | 0.59 | general ferritic steel |
[K] | 1600 | general for steel |
[] | numerical parameter (defined) | |
[] | numerical parameter (defined) | |
[J ] | 470 | general for steel |
[-] | 0.9 | general for steel |
7800 | general for steel | |
general for steel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, M.; De Vuyst, T.; Seidl, M.; Schulte, M. Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings. Materials 2021, 14, 4235. https://doi.org/10.3390/ma14154235
Becker M, De Vuyst T, Seidl M, Schulte M. Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings. Materials. 2021; 14(15):4235. https://doi.org/10.3390/ma14154235
Chicago/Turabian StyleBecker, Marvin, Tom De Vuyst, Marina Seidl, and Miriam Schulte. 2021. "Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings" Materials 14, no. 15: 4235. https://doi.org/10.3390/ma14154235
APA StyleBecker, M., De Vuyst, T., Seidl, M., & Schulte, M. (2021). Comparative Study on High Strain Rate Fracture Modelling Using the Application of Explosively Driven Cylinder Rings. Materials, 14(15), 4235. https://doi.org/10.3390/ma14154235