Sewage Sludge as a Tool in Limiting the Content of Trace Elements in Avena sativa L. on the Soil Polluted with Diesel Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assumptions Underlying the Experiment
2.2. Characteristics of Soil and Sewage Sludge
2.3. Research Procedures Applied
2.4. Statistical Analysis
3. Results
3.1. Trace Elements Content in Plants
3.2. Statistical Analysis
4. Discussion
4.1. The Effect of Diesel oil Contamination on Plants
4.2. The Impact of Sewage Sludge Application on Trace Elements Content in Plants on Soil Contaminated with Diesel Oil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A. The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Pol. J. Environ. Stud. 2015, 24, 2157–2166. [Google Scholar] [CrossRef]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Sani, S.G.A.; Khan, W.U.; Reichenauer, T.G. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environ. Sci. Pollut. Res. Int. 2019, 26, 18451–18464. [Google Scholar] [CrossRef] [Green Version]
- Souza, E.C.; Vessoni-Penna, T.C.; De Souza Olieira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeter. Biodegr. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Kaczyńska, G.; Borowik, A.; Wyszkowska, J. Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut. 2015, 226, 372. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Leblic, C.M.I.; Turmero, A.; Hernández, M.; Hernández, A.J.; Pastor, J.; Ball, A.S.; Rodríguez, J.; Arias, A.S.M.E. Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. J. Environ. Manag. 2012, 95, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszkowski, M.; Sivitskaya, V. Changes in the content of organic carbon and available forms of macronutrients in soil under the influence of soil contamination with fuel oil and application of different substances. J. Elem. 2012, 17, 139–148. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Ziółkowska, A. Effect of soil contamination with diesel oil on yellow lupine yield and macroelements content. Plant Soil Environ. 2004, 50, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Liste, H.; Felgentreu, D. Crop growth, culturable bacteria and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 2006, 31, 43–52. [Google Scholar] [CrossRef]
- Shirdam, R.; Zand, A.D.; Bidendi, G.N.; Mehrdadi, N. Phytoremediation of hydrocarbon contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection 2008, 89, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Ujowundu, C.O.; Kalu, F.N.; Nwaoguikpe, R.N.; Kalu, O.I.; Iejirika, A.C.E.; Nwosunjoku, E.C.; Okechukwu, R.I. Biochemical and physical characterization of diesel petroleum contaminated soil in southeastern Nigeria. Res. J. Chem. Sci. 2011, 1, 57–62. [Google Scholar]
- Lasat, M.M. Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res. 2000, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Soil-plant transfer of trace elements—An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Lu, J.; Lu, H.; Lei, K.; Wang, W.; Guan, Y. Trace metal element pollution of soil and water resources caused by small-scale metallic ore mining activities: A case study from a sphalerite mine in North China. Environ. Sci. Pollut. Res. Int. 2019, 26, 24630–24644. [Google Scholar] [CrossRef] [Green Version]
- Appenroth, K.-J. What are “heavy metals” in Plant Sciences? Acta Physiol. Plant. 2010, 32, 615–619. [Google Scholar] [CrossRef]
- Morkunas, I.; Woźniak, A.; Mai, V.C.; Rucińska-Sobkowiak, R.; Jeandet, P. The role of heavy metals in plant response to biotic stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef] [Green Version]
- Rai, V.; Khatoon, S.; Bisht, S.S.; Mehrotra, S. Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 2005, 61, 1644–1650. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Carreira, J.A.; Ruız, R.G.; Dick, R.P. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal contaminated and reclaimed soils. Soil Biol. Biochem. 2004, 6, 1559–1568. [Google Scholar] [CrossRef]
- Okonokhua, B.O.; Ikhajiagbe, B.; Anoliefo, G.O.; Emende, T.O. The effects of spent engine oil on soil properties and growth of maize (Zea mays L.). J. Appl. Sci. Environ. Manag. 2007, 11, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Broos, K.; Beyens, H.; Smolders, E. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol. Biochem. 2005, 37, 573–579. [Google Scholar] [CrossRef]
- Guala, S.D.; Vega, F.A.; Covelo, E.F. The dynamics of heavy metals in plant-soil interactions. Ecol. Model. 2010, 221, 1148–1152. [Google Scholar] [CrossRef]
- Yao, H.; Xu, J.; Huang, C. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal polluted paddy soils. Geoderma 2003, 115, 139–148. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A.; Barczyk, G.; Boligłowa, E.; Dabioch, M. Effect of petroleum-derived substances on life history traits of bird cherry-oat aphid (Rhopalosiphum padi L.) and on the growth and chemical composition of winter wheat. Environ. Sci. Pollut. Res. 2018, 25, 27000–27012. [Google Scholar] [CrossRef] [Green Version]
- Gratani, L.; Crescente, F.M.; Varone, L. Long-term monitoring of metal pollution by urban trees. Atmos. Environ. 2008, 42, 8273–8277. [Google Scholar] [CrossRef]
- Hajduk, E.; Kaniuczak, J. Microelements in soils and in leaves of selected tree species in an industrial urban area. J. Elem. 2014, 19, 1001–1020. [Google Scholar] [CrossRef]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Kicińska, A.; Kosa-Burda, B.; Kozub, P. Utilization of a sewage sludge for rehabilitating the soils degraded by the metallurgical industry and a possible environmental risk involved. Hum. Ecol. Risk Assess. 2018, 24, 1990–2010. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Kominko, H.; Gorazda, K.; Wzorek, Z. Potentiality of sewage sludge-based organo-mineral fertilizer production in Poland considering nutrient value, heavy metal content and phytotoxicity for rapeseed crops. J. Environ. Manag. 2019, 248, 109283. [Google Scholar] [CrossRef]
- Deeks, L.K.; Chaney, K.; Murray, C.; Sakrabani, R.; Gedara, S.; Le, M.S.; Tyrrel, S.; Pawlett, M.; Read, R.; Smith, G.H. A new sludge-derived organo-mineral fertilizer gives similar crop yields as conventional fertilizers. Agron. Sustain. Dev. 2013, 33, 539–549. [Google Scholar] [CrossRef]
- Siebielec, G.; Siebielec, S.; Lipski, D. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. J. Clean Prod. 2018, 87, 372–379. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Senesi, N.; Brunetti, G.; Polo, A. Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol. Fertil. Soils. 2004, 39, 320–328. [Google Scholar] [CrossRef]
- Armenta, R.; Vaca, R.; Lugo, J.; del Aguila, P. Microbiological and biochemical properties of an agricultural Mexican soil amended with sewage sludge. Rev. Bras. Ciênc. Solo. 2011, 36, 1646–1655. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 2013, 18, 769–796. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 26 September 2020).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- PN-R-04032. Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution; Polish Committee for Standardization: Warsaw, Poland, 1998; pp. 1–12.
- ISO 10390. Soil Quality—Determination of pH; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Klute, A. Methods of Soil Analysis; Agronomy 9; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- ISO 11261. Soil Quality—Determination of Total Nitrogen-Modified; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Method of Soil Analysis: Chemical Methods; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor- und Kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum. Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Dell Inc. Dell Statistica (Data Analysis Software System), Version 13. 2016. Available online: software.dell.com (accessed on 23 September 2020).
- Chaineau, C.H.; Yepremian, C.; Vidalie, J.F.; Ducreux, J.; Ballerini, D. Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water Air Soil Pollut. 2003, 144, 419–440. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H.J. Effect of diesel fuel on growth of selected plant species. Environ. Geochem. Health 1999, 21, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Akpoveta, O.V.; Osakwe, S.A. Determination of heavy metal contents in refined petroleum products. IOSR J. Appl. Chem. 2014, 7, 1–2. [Google Scholar] [CrossRef]
- Tornero, V.; Hanke, G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Mar. Pollut. Bull. 2016, 112, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Vwioko, D.E.; Anoliefo, G.O.; Fashemi, S.D. Metals concentration in plant tissues of Ricinus communis L. (Castor Oil) grown in soil contaminated with spent lubricating oil. J. Appl. Sci. Environ. Manag. 2006, 10, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Agbogidi, O.M.; Eruotor, P.G.; Akparobi, S.O. Effects of crude oil levels on the growth of maize (Zea mays L.). Am. J. Food. Technol. 2007, 2, 529–535. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air Soil Poll. 2020, 231, 1–12. [Google Scholar] [CrossRef]
- Gbadebo, A.M.; Adenuga, M.D. Effect of crude oil on the emergence and growth of cowpea in two contrasting soil types from Abeokuta, Southwestern Nigeria. Asian J. Appl. Sci. 2012, 5, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Ziółkowska, A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere. 2009, 74, 860–865. [Google Scholar] [CrossRef]
- Osuagwu, A.N.; Okigbo, A.U.; Ekpo, I.A.; Chukwurah, P.N.; Agbor, R.B. Effect of crude oil pollution on growth parameters, chlorophyll content and bulbils yield in air potato (Dioscorea bulbifera L.). Int. J. Appl. Sci. Technol. 2013, 3, 37–42. [Google Scholar]
- Wyszkowski, M.; Ziółkowska, A. Effect of compost, bentonite and calcium oxide on content of some macroelements in plants from soil contaminated by petrol and diesel oil. J. Elem. 2009, 14, 405–418. [Google Scholar] [CrossRef]
- Shukry, W.M.; Al-Hawas, G.H.S.; Al-Moaikal, R.M.S.; El-Bendary, M.A. Effect of petroleum crude oil on mineral nutrient elements, soil properties and bacterial biomass of the rhizosphere of Jojoba. Br. J. Environ. Clim. Chang. 2013, 3, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Akpan, G.U.; Udoh, B.T. Evaluation of some properties of soils affected by diesel oil pollution in Uyo, Niger Delta Area, Nigeria. J. Biol. Agric. Healthcare 2013, 3, 33–42. [Google Scholar]
- John, R.C.; Itah, A.Y.; Essien, J.P.; Ikpe, D.I. Fate of nitrogen-fixing bacteria in crude oil contaminated wetland ultisol. Bull. Environ. Contam. Toxicol. 2011, 87, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, Z.; Hu, X.; Zhang, N.; Chen, T.; Ding, Z. Sorption of Pb(II) and Cu(II) on the colloid of black soil, red soil and fine powder kaolinite: Effects of pH, ionic strength and organic matter. Environ. Pollut. Bioavailab. 2019, 31, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.K.; Liu, Z.Y.; Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant. Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640–641, 273–283. [Google Scholar] [CrossRef]
- Sivitskaya, V.; Wyszkowski, M. Effect of heating oil and neutralizing substances on the content of some trace elements in maize (Zea mays L.). Ecol. Chem. Eng. A 2013, 20, 323–331. [Google Scholar] [CrossRef]
- Gospodarek, J.; Nadgórska-Socha, A. Chemical composition of broad beans (Vicia faba L.) and development parameters of black bean aphid (Aphis fabae Scop.) under conditions of soil contamination with oil derivatives. J. Elem. 2016, 21, 1359–1376. [Google Scholar] [CrossRef]
- Strawn, D.G.; Sparks, D.L. Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil. Soil Sci. Soc. Am. J. 2000, 64, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Murray, H.; Pinchin, T.A.; Macfie, S.M. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils Sediment. 2011, 11, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, J.; Gambuś, F.; Czech, T.; Antonkiewicz, J. Yielding and content of selected microelements in maize fertilized with various organic materials. J. Ecol. Eng. 2017, 18, 219–223. [Google Scholar] [CrossRef]
- Bowszys, T.; Wierzbowska, J.; Sternik, P.; Busse, M.K. Effect of the application of sewage sludge compost on the content and leaching of zinc and copper from soils under agricultural use. J. Ecol. Eng. 2015, 16, 1–7. [Google Scholar] [CrossRef]
- Pogrzeba, M.; Galimska-Stypa, R.; Krzyżak, J.; Sas-Nowosielska, A. Sewage sludge and fly ash mixture as an alternative for decontaminating lead and zinc ore regions. Environ. Monit. Assess. 2015, 187, 4120–4133. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, Z.M.; Bilgin, A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 2017, 102, 490–500. [Google Scholar] [CrossRef]
- Grobelak, A.; Placek, A.; Grossera, A.; Singh, R.B.; Almås, Å.R.; Napora, A.; Kacprzak, M. Effects of single sewage sludge application on soil phytoremediation. J. Clean Prod. 2017, 155, 189–197. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.M.S.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Inter. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [Green Version]
Parameters | Unit | Soil | Sewage Sludge |
---|---|---|---|
Sand >0.05 mm | % | 78.08 | - |
Silt 0.002–0.05 mm | % | 20.46 | - |
Clay <0.002 mm | % | 1.46 | - |
pH in 1 M KCl | 6.58 | 8.20 | |
Hydrolytic acidity | mM(+) kg−1 | 8.50 | - |
Cation exchange capacity (CEC) | mM(+) kg−1 | 105.0 | - |
Total exchangeable bases (TEB) | mM(+) kg−1 | 113.5 | - |
Base saturation (BS) | % | 92.5 | - |
Organic carbon (TOC) | g kg−1 d.m. | 12.7 | - |
Total nitrogen | g kg−1 d.m. | 0.88 | 51.0 |
Total phosphorus | g kg−1 d.m. | - | 38.8 |
Available phosphorus | mg kg−1 d.m. | 17.6 | - |
Available potassium | mg kg−1 d.m. | 20.7 | - |
Total magnesium | g kg−1 d.m. | - | 8.9 |
Available magnesium | mg kg−1 d.m. | 8.8 | - |
Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Sewage Sludge Dose (g kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 4 | 8 | 12 | ||
Cadmium (Cd) | |||||
0 | 0.165 defg | 0.131 g | 0.151 fg | 0.157 fg | 0.151 A |
5 | 0.186 bcdef | 0.188 bcdef | 0.161 efg | 0.157 fg | 0.173 B |
10 | 0.202 abcd | 0.209 abc | 0.197 abcde | 0.173 cdef | 0.195 C |
15 | 0.203 abcd | 0.232 a | 0.214 ab | 0.235 a | 0.221 D |
Average | 0.189 I | 0.190 I | 0.181 I | 0.181 I | 0.185 |
r | 0.943 ** | 0.967 ** | 0.978 ** | 0.870 ** | 0.999 ** |
LSD for: | diesel oil dose (DO)—0.011, sewage sludge dose (SS)—0.011, interaction - 0.022 | ||||
Lead (Pb) | |||||
0 | 0.246 de | 0.188 e | 0.197 e | 0.227 e | 0.215 A |
5 | 0.251 cde | 0.339 bcd | 0.422 ab | 0.348 bc | 0.340 B |
10 | 0.366 ab | 0.401 ab | 0.454 a | 0.454 a | 0.419 C |
15 | 0.429 ab | 0.401 ab | 0.422 ab | 0.435 ab | 0.422 C |
Average | 0.323 I | 0.332 I, II | 0.374 III | 0.366 II, III | 0.349 |
r | 0.954 ** | 0.900 ** | 0.768 ** | 0.910 ** | 0.931 ** |
LSD for: | diesel oil dose (DO)—0.027, sewage sludge dose (SS)—0.027, interaction—0.054 | ||||
Chromium (Cr) | |||||
0 | 1.303 de | 1.623 bc | 2.177 a | 1.303 de | 1.602 A |
5 | 1.535 bcd | 1.307 cde | 1.475 bcd | 1.704 b | 1.505 A |
10 | 1.319 cde | 1.046 ef | 1.094 ef | 0.485 g | 0.986 B |
15 | 0.926 f | 0.241 g | 0.204 g | 0.293 g | 0.416 C |
Average | 1.271 I | 1.054 II | 1.238 I | 0.946 II | 1.127 |
r | −0.687 ** | −0.962 ** | −0.989 ** | −0.820 ** | −0.964 ** |
LSD for: | diesel oil dose (DO)—0.087, sewage sludge dose (SS)—0.087, interaction—0.174 |
Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Sewage Sludge Dose (g kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 4 | 8 | 12 | ||
Nickel (Ni) | |||||
0 | 2.054 abc | 1.668 bc | 2.805 a | 2.542 ab | 2.267 A |
5 | 2.094 abc | 1.363 cd | 1.941 abc | 2.384 ab | 1.946 BC |
10 | 2.164 abc | 2.477 ab | 1.823 bc | 1.823 bc | 2.072 AB |
15 | 2.269 ab | 0.733 d | 1.946a bc | 1.786 bc | 1.684 C |
Average | 2.145 I | 1.560 II | 2.129 I | 2.134 I | 1.992 |
r | 0.980 ** | −0.301 | −0.766 ** | −0.946 ** | −0.858 ** |
LSD for: | diesel oil dose (DO)—0.242, sewage sludge dose (SS)—0.242, interaction—0.484 | ||||
Zinc (Zn) | |||||
0 | 17.69 ab | 18.92 a | 16.43 abc | 19.15 a | 18.05 A |
5 | 12.76 def | 14.81 bcde | 17.69 ab | 16.07 abcd | 15.33 B |
10 | 10.23 f | 12.24 f | 13.62 cde | 15.36 bcde | 12.86 C |
15 | 12.36 ef | 12.28 ef | 13.31 cdef | 9.99 f | 11.99 C |
Average | 13.26 I | 14.56 II | 15.26 II | 15.14 II | 14.56 |
r | −0.758 ** | −0.924 ** | −0.809 ** | −0.956 ** | −0.979 ** |
LSD for: | diesel oil dose (DO)—0.924, sewage sludge dose (SS)—0.924, interaction—1.848 | ||||
Copper (Cu) | |||||
0 | 4.285 a | 2.530 bc | 2.949 b | 4.426 a | 3.548 A |
5 | 2.621 bc | 2.581 bc | 2.377 bcd | 1.268 ef | 2.212 B |
10 | 2.066 bcdef | 2.258 bcde | 1.958 bcdef | 1.936 cdef | 2.055 B |
15 | 1.104 f | 1.472 def | 1.070 f | 1.268 ef | 1.229 C |
Average | 2.519 I | 2.210 I, II | 2.089 II | 2.225 I, II | 2.261 |
r | −0.977 ** | −0.881 ** | −0.988 ** | −0.757 ** | −0.956 ** |
LSD for: | diesel oil dose (DO)—0.276, sewage sludge dose (SS)—0.276, interaction—0.552 |
Diesel Oil Dose (cm3 kg−1 d.m. of Soil) | Sewage Sludge Dose (g kg−1 d.m. of Soil) | Average | |||
---|---|---|---|---|---|
0 | 4 | 8 | 12 | ||
Manganese (Mn) | |||||
0 | 44.05 i | 39.29 j | 42.35 ij | 44.43 i | 42.53 A |
5 | 73.22 g | 69.67 g | 65.00 h | 87.39 e | 73.82 B |
10 | 102.86 d | 98.84 d | 79.46 f | 91.05 e | 93.05 C |
15 | 128.25 a | 99.06 d | 121.47 b | 114.42 c | 115.80 D |
Average | 87.10 I | 76.72 II | 77.07 II | 84.32 III | 81.30 |
r | 0.999 ** | 0.944 ** | 0.976 ** | 0.946 ** | 0.995 ** |
LSD for: | diesel oil dose (DO)—1.186, sewage sludge dose (SS)—1.186, interaction—2.372 | ||||
Iron (Fe) | |||||
0 | 70.40 efg | 120.87 a | 92.54 b | 78.37 de | 90.55 A |
5 | 75.36 def | 66.01 fg | 90.18 bc | 81.12 cde | 78.17 B |
10 | 91.88 bc | 90.98 bc | 75.80 def | 75.04 defg | 83.43 C |
15 | 83.01 bcd | 53.48 h | 64.38 g | 92.39 b | 73.32 D |
Average | 80.16 I | 82.84 I | 80.73 I | 81.73 I | 81.36 |
r | 0.748 ** | −0.769 ** | −0.969 ** | 0.617 * | −0.812 ** |
LSD for: | diesel oil dose (DO)—2.972, sewage sludge dose (SS)—2.972, interaction—5.944 | ||||
Cobalt (Co) | |||||
0 | 3.398 a | 3.212 abc | 2.636 de | 2.552 de | 2.950 A |
5 | 3.233 ab | 3.224 abc | 3.215 abc | 2.928 bcd | 3.150 B |
10 | 2.823 cde | 2.636 de | 2.742 de | 2.916 bcd | 2.779 C |
15 | 2.791 de | 2.922 bcd | 2.698 de | 2.418 e | 2.707 C |
Average | 3.061 I | 2.999 I | 2.823 II | 2.704 II | 2.897 |
r | −0.955 ** | −0.674 ** | −0.140 | −0.207 | −0.719 ** |
LSD for: | diesel oil dose (DO)—0.112, sewage sludge dose (SS)—0.112, interaction—0.224 |
Trace Elements | Pb | Cr | Ni | Zn | Cu | Mn | Fe | Co |
---|---|---|---|---|---|---|---|---|
Cd | 0.604 ** | −0.724 ** | −0.419 ** | −0.786 ** | −0.475 ** | 0.766 ** | −0.400 ** | −0.384 ** |
Pb | −0.672 ** | −0.245 | −0.506 ** | −0.634 ** | 0.770 ** | −0.311 * | −0.239 | |
Cr | 0.489 ** | 0.468 ** | 0.467 ** | −0.701 ** | 0.443 ** | 0.287 * | ||
Ni | 0.116 | 0.257 | −0.155 | 0.334 * | −0.235 | |||
Zn | 0.609 ** | −0.779 ** | 0.204 | 0.385 ** | ||||
Cu | −0.794 ** | 0.081 | 0.305 * | |||||
Mn | −0.268 | −0.395 ** | ||||||
Fe | −0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Sewage Sludge as a Tool in Limiting the Content of Trace Elements in Avena sativa L. on the Soil Polluted with Diesel Oil. Materials 2021, 14, 4003. https://doi.org/10.3390/ma14144003
Wyszkowski M, Wyszkowska J, Borowik A, Kordala N. Sewage Sludge as a Tool in Limiting the Content of Trace Elements in Avena sativa L. on the Soil Polluted with Diesel Oil. Materials. 2021; 14(14):4003. https://doi.org/10.3390/ma14144003
Chicago/Turabian StyleWyszkowski, Mirosław, Jadwiga Wyszkowska, Agata Borowik, and Natalia Kordala. 2021. "Sewage Sludge as a Tool in Limiting the Content of Trace Elements in Avena sativa L. on the Soil Polluted with Diesel Oil" Materials 14, no. 14: 4003. https://doi.org/10.3390/ma14144003
APA StyleWyszkowski, M., Wyszkowska, J., Borowik, A., & Kordala, N. (2021). Sewage Sludge as a Tool in Limiting the Content of Trace Elements in Avena sativa L. on the Soil Polluted with Diesel Oil. Materials, 14(14), 4003. https://doi.org/10.3390/ma14144003