Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent and Adsorbates
2.2. Chromatographic Measurements
2.3. DFT Calculations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gotzias, A.; Heiberg-Andersen, H.; Kainourgiakis, M.; Steriotis, T. A grand canonical Monte Carlo study of hydrogen adsorption in carbon nanohorns and nanocones at 77K. Carbon 2011, 49, 2715–2724. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Hołyst, R.; Terrones, M.; Terrones, H. Hydrogen storage in nanoporous carbon materials: Myth and facts. Phys. Chem. Chem. Phys. 2007, 9, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Thapa, R.; Rajkamal, A.; Chandrakumar, K.; Das, G. First-principles identification of the origin for higher activity of surface doped carbon nanohorn: Impact on hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 23196–23209. [Google Scholar] [CrossRef]
- Sano, N.; Taniguchi, K.; Tamon, H. Hydrogen Storage in Porous Single-Walled Carbon Nanohorns Dispersed with Pd–Ni Alloy Nanoparticles. J. Phys. Chem. C 2014, 118, 3402–3408. [Google Scholar] [CrossRef]
- Rungnim, C.; Faungnawakij, K.; Sano, N.; Kungwan, N.; Namuangruk, S. Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. Int. J. Hydrogen Energy 2018, 43, 23336–23345. [Google Scholar] [CrossRef]
- Giasafaki, D.; Charalambopoulou, G.; Tampaxis, C.; Gattia, D.M.; Montone, A.; Barucca, G.; Steriotis, T. Hydrogen storage properties of Pd-doped thermally oxidized single wall carbon nanohorns. J. Alloy. Compd. 2015, 645, S485–S489. [Google Scholar] [CrossRef]
- Yodsin, N.; Rungnim, C.; Promarak, V.; Namuangruk, S.; Kungwan, N.; Rattanawan, R.; Jungsuttiwong, S. Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study. Phys. Chem. Chem. Phys. 2018, 20, 21194–21203. [Google Scholar] [CrossRef]
- Bekyarova, E.; Murata, K.; Yudasaka, M.; Kasuya, D.; Iijima, S.; Tanaka, H.; Kahoh, H.; Kaneko, K. Single-Wall Nanostructured Carbon for Methane Storage. J. Phys. Chem. B 2003, 107, 4681–4684. [Google Scholar] [CrossRef]
- Murata, K.; Hashimoto, A.; Yudasaka, M.; Kasuya, D.; Kaneko, K.; Iijima, S. The Use of Charge Transfer to Enhance the Methane-Storage Capacity of Single-Walled, Nanostructured Carbon. Adv. Mater. 2004, 16, 1520–1522. [Google Scholar] [CrossRef]
- Ohba, T.; Yamamoto, S.; Takase, A.; Yudasaka, M.; Iijima, S. Evaluation of carbon nanopores using large molecular probes in grand canonical Monte Carlo simulations and experiments. Carbon 2015, 88, 133–138. [Google Scholar] [CrossRef]
- De Souza, L.; Da Silva, A.M.; Dos Santos, H.F.; De Almeida, W.B. Oxidized single-walled carbon nanotubes and nanocones: A DFT study. RSC Adv. 2017, 7, 13212–13222. [Google Scholar] [CrossRef] [Green Version]
- Krungleviciute, V.; Calbi, M.M.; Wagner, J.A.; Migone, A.D.; Yudasaka, M.; Iijima, S. Probing the Structure of Carbon Nanohorn Aggregates by Adsorbing Gases of Different Sizes. J. Phys. Chem. C 2008, 112, 5742–5746. [Google Scholar] [CrossRef]
- Szymański, G.; Rychlicki, G.; Terzyk, A. Catalytic conversion of ethanol on carbon catalysts. Carbon 1994, 32, 265–271. [Google Scholar] [CrossRef]
- Goering, J.; Kadossov, E.; Burghaus, U. Adsorption Kinetics of Alcohols on Single-Wall Carbon Nanotubes: An Ultrahigh Vacuum Surface Chemistry Study. J. Phys. Chem. C 2008, 112, 10114–10124. [Google Scholar] [CrossRef]
- Nobusawa, S.; Kaku, H.; Amada, T.; Asano, H.; Satoh, K.; Ruike, M. Calorimetric study and simulation of the adsorption of methanol and propanol onto activated carbon fibers. Colloids Surf. A Physicochem. Eng. Asp. 2013, 419, 100–112. [Google Scholar] [CrossRef]
- Paryjczak, T. Gas Chromatography in Adsorption and Catalysis; Ellis Horwood Series in Physical Chemistry; Ellis Horwood; Halsted Press: Chichester, West Sussex, NY, USA, 1986; pp. 16–65. ISBN 978-0-85312-219-7. [Google Scholar]
- Słomkiewicz, P. Determination of the Adsorption Equilibrium of Alcohols and Alkenes on a Sulphonated Styrene–Divinylbenzene Copolymer. Adsorpt. Sci. Technol. 2006, 24, 239–256. [Google Scholar] [CrossRef]
- Dollimore, D.; Heal, G.; Martin, D. An improvement in the elution technique for measurement of adsorption isotherms by gas chromatography. J. Chromatogr. A 1970, 50, 209–218. [Google Scholar] [CrossRef]
- Wang, K.; Qiao, S.Z.; Hu, X. Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. Sep. Purif. Technol. 2004, 34, 165–176. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Kaneko, K.; Gauden, P.A.; Kowlaczyk, P.; Itoh, T. The first atomistic modelling-aided reproduction of morphologically defective single walled carbon nanohorns. Phys. Chem. Chem. Phys. 2012, 15, 1232–1240. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiLabio, G.A.; Otero-de-la-Roza, A. Noncovalent Interactions in Density Functional Theory. In Reviews in Computational Chemistry; Parrill, A.L., Lipkowitz, K.B., Eds.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2016; pp. 1–97. ISBN 978-1-119-14873-9. [Google Scholar]
- Wang, W.; Zhang, Y.; Wang, Y.-B. Noncovalent π…π interaction between graphene and aromatic molecule: Structure, energy, and nature. J. Chem. Phys. 2014, 140, 94302. [Google Scholar] [CrossRef]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Hohenstein, E.G.; Sherrill, C.D. Wavefunction methods for noncovalent interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 304–326. [Google Scholar] [CrossRef]
- Hohenstein, E.G.; Sherrill, D. Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π-π interactions in linear acenes. J. Chem. Phys. 2010, 132, 184111. [Google Scholar] [CrossRef] [Green Version]
- Terzyk, A.; Rychlicki, G. Calorimetric Investigations of Molecular Interactions in the Adsorbate/Microporous Activated Carbon System. Towards the Mechanism of Adsorption in Micropores. Adsorpt. Sci. Technol. 1999, 17, 323–373. [Google Scholar] [CrossRef]
- Berezin, G.I. Relationship of the critical parameters of adsorbed gases with the initial heats of adsorption on carbon adsorbents. Russ. Chem. Bull. 1985, 34, 2600–2601. [Google Scholar] [CrossRef]
- Buryak, A.K.; Berezin, G.I. Calculation of heat adsorption of certain halomethanes on graphitized thermal black. Russ. Chem. Bull. 1989, 38, 1575–1577. [Google Scholar] [CrossRef]
- Avgul’, N.N.; Berezin, G.I.; Kiselev, A.V.; Lygina, I.A. The adsorption and heat of adsorption of normal alcohols on graphitized carbon black. Russ. Chem. Bull. 1961, 10, 186–193. [Google Scholar] [CrossRef]
- Barrer, R.M.; Stuart, W.I. 642. Statistical thermodynamic interpretation of the sorption of water and methanol by carbon. J. Chem. Soc. 1956, 3307, 3307–3311. [Google Scholar] [CrossRef]
Graphene | Interaction Energy and Its Components (SAPT0/aug-cc-pVDZ), (kJ/mol) | ||||||
---|---|---|---|---|---|---|---|
Elst | Exch | Ind | Disp | Total SAPT0 | SCS-SAPT0 | Disp/Elst | |
MeOH | - | - | - | - | - | - | - |
1 | −15.03 | 28.47 | −5.48 | −38.56 | −30.65 | −22.06 | 2.56 |
2 | −10.89 | 26.17 | −5.07 | −38.10 | −27.88 | −19.38 | 3.50 |
3 | −13.44 | 27.17 | −5.28 | −37.60 | −29.14 | −20.77 | 2.80 |
4 | −10.97 | 26.38 | −5.07 | −38.18 | −27.88 | −19.38 | 3.48 |
EtOH | - | - | - | - | - | - | - |
1 | −11.30 | 28.76 | −2.93 | −43.29 | −28.76 | −19.18 | 3.83 |
2 | −11.47 | 28.13 | −5.28 | −41.45 | −30.20 | −20.81 | 3.62 |
3 | −17.83 | 42.41 | −5.36 | −56.81 | −37.64 | −25.04 | 3.19 |
4 | −17.83 | 42.41 | −5.36 | −56.84 | −37.64 | −25.04 | 3.18 |
PrOH | - | - | - | - | - | - | - |
1 | −18.25 | 39.56 | −4.02 | −58.82 | −41.53 | −28.47 | 3.22 |
2 | −17.00 | 38.43 | −3.85 | −57.11 | −39.48 | −26.84 | 3.36 |
3 | −22.02 | 54.09 | −6.28 | −75.57 | −49.78 | −33.03 | 3.43 |
4 | −18.25 | 39.48 | −3.98 | −57.53 | −40.28 | −27.55 | 3.15 |
BuOH | - | - | - | - | - | - | - |
1 | −19.80 | 44.92 | −4.73 | −58.70 | −38.31 | −25.37 | 2.96 |
2 | −19.43 | 43.79 | −4.14 | −64.81 | −44.59 | −30.23 | 3.34 |
3 | −25.87 | 63.97 | −7.24 | −88.47 | −57.61 | −38.06 | 3.42 |
4 | −24.41 | 62.59 | −6.82 | −91.86 | −60.54 | −40.15 | 3.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymański, G.S.; Kaczmarek-Kędziera, A.; Zięba, M.; Kowalczyk, P.; Terzyk, A.P. Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn. Materials 2021, 14, 4001. https://doi.org/10.3390/ma14144001
Szymański GS, Kaczmarek-Kędziera A, Zięba M, Kowalczyk P, Terzyk AP. Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn. Materials. 2021; 14(14):4001. https://doi.org/10.3390/ma14144001
Chicago/Turabian StyleSzymański, Grzegorz Stanisław, Anna Kaczmarek-Kędziera, Monika Zięba, Piotr Kowalczyk, and Artur Piotr Terzyk. 2021. "Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn" Materials 14, no. 14: 4001. https://doi.org/10.3390/ma14144001
APA StyleSzymański, G. S., Kaczmarek-Kędziera, A., Zięba, M., Kowalczyk, P., & Terzyk, A. P. (2021). Insight into the Mechanisms of Low Coverage Adsorption of N-Alcohols on Single Walled Carbon Nanohorn. Materials, 14(14), 4001. https://doi.org/10.3390/ma14144001