A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime
Abstract
:1. Introduction
2. Theory
2.1. Discrete Element Modeling and Agglomerate Structure
2.2. Agglomerate Dynamics With a Monodisperse Population Balance Model
3. Results and Discussion
3.1. Evolution of Agglomerate Morphology by DEM and a MPBM
3.2. Impact of Primary Particle Polydispersity on Agglomeration Dynamics
3.3. Coagulation of Nanoparticles at High Pressures
3.4. Validation of Low-Temperature Coagulation Dynamics with Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Collision diameter, | |
Gyration diameter, | |
Mobility diameter, | |
Primary particle diameter, | |
Fractal dimension | |
Mass-mobility exponent | |
Boltzmann constant, | |
Fractal prefactor | |
Mass-mobility prefactor | |
Knudsen number | |
Single agglomerate mass, | |
Number of primary particles per agglomerate | |
Agglomerate number density, | |
Gas pressure, | |
Universal gas constant, | |
Time, | |
Temperature, | |
Greek letters | |
Collision frequency, | |
Bulk aerosol density, | |
Effective aerosol density, | |
Geometric standard deviation of distribution | |
Geometric standard deviation of distribution |
References
- Pratsinis, S.E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 1998, 24, 197–219. [Google Scholar] [CrossRef]
- Kholghy, M.R.; Kelesidis, G.A.; Pratsinis, S.E. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Phys. Chem. Chem. Phys. 2018, 20, 10926–10938. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, G.A.; Goudeli, E.; Pratsinis, S.E. Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation. Proc. Combust. Inst. 2017, 36, 29–50. [Google Scholar] [CrossRef] [Green Version]
- Tsantilis, S.; Pratsinis, S.E. Soft-and hard-agglomerate aerosols made at high temperatures. Langmuir 2004, 20, 5933–5939. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, S.K. Smoke, Dust, and Haze; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Musculus, M.P.; Miles, P.C.; Pickett, L.M. Conceptual models for partially premixed low-temperature diesel combustion. Prog. Energy Combust. Sci. 2013, 39, 246–283. [Google Scholar] [CrossRef]
- Maricq, M.M. Coagulation dynamics of fractal-like soot aggregates. J. Aerosol. Sci. 2007, 38, 141–156. [Google Scholar] [CrossRef]
- Capes, G.; Johnson, B.; McFiggans, G.; Williams, P.; Haywood, J.; Coe, H. Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Otto, E.; Stratmann, F.; Fissan, H.; Vemury, S.; Pratsinis, S.E. Quasi-Self-Preserving Log-Normal Size Distributions in the Transition Regime. Part. Part. Syst. Charact. 1994, 11, 359–366. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Goudeli, E.; Pratsinis, S.E. Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth. Carbon 2017, 121, 527–535. [Google Scholar] [CrossRef]
- Goudeli, E.; Eggersdorfer, M.L.; Pratsinis, S.E. Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering. J. Aerosol. Sci. 2015, 89, 58–68. [Google Scholar] [CrossRef]
- Goudeli, E.; Eggersdorfer, M.L.; Pratsinis, S.E. Coagulation of agglomerates consisting of polydisperse primary particles. Langmuir 2016, 32, 9276–9285. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Rigopoulos, S.; Liu, A. Modelling of soot coalescence and aggregation with a two-population balance equation model and a conservative finite volume method. Combust. Flame 2021, 229, 111382. [Google Scholar] [CrossRef]
- Kholghy, M.R.; Veshkini, A.; Thomson, M.J. The core–shell internal nanostructure of soot—A criterion to model soot maturity. Carbon 2016, 100, 508–536. [Google Scholar] [CrossRef]
- Mueller, M.E.; Blanquart, G.; Pitsch, H. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 2009, 156, 1143–1155. [Google Scholar] [CrossRef]
- Kruis, F.E.; Kusters, K.A.; Pratsinis, S.E.; Scarlett, B. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 1993, 19, 514–526. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Rigopoulos, S. A conservative method for numerical solution of the population balance equation, and application to soot formation. Combust. Flame 2019, 205, 506–521. [Google Scholar] [CrossRef]
- Saggese, C.; Ferrario, S.; Camacho, J.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Wang, H.; Faravelli, T. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust. Flame 2015, 162, 3356–3369. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.; Carslaw, K.; Spracklen, D.; Ridley, D.; Manktelow, P.; Chipperfield, M.; Pickering, S.; Johnson, C. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 2010, 3, 519–551. [Google Scholar] [CrossRef] [Green Version]
- Goudeli, E.; Eggersdorfer, M.L.; Pratsinis, S.E. Coagulation–Agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir 2015, 31, 1320–1327. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Goudeli, E. Self-preserving size distribution and collision frequency of flame-made nanoparticles in the transition regime. Proc. Combust. Inst. 2021, 38, 1233–1240. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Furrer, F.M.; Wegner, K.; Pratsinis, S.E. Impact of humidity on silica nanoparticle agglomerate morphology and size distribution. Langmuir 2018, 34, 8532–8541. [Google Scholar] [CrossRef] [PubMed]
- Rissler, J.; Messing, M.E.; Malik, A.I.; Nilsson, P.T.; Nordin, E.Z.; Bohgard, M.; Sanati, M.; Pagels, J.H. Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Sci. Technol. 2013, 47, 792–805. [Google Scholar] [CrossRef] [Green Version]
- Maricq, M.M. Examining the relationship between black carbon and soot in flames and engine exhaust. Aerosol Sci. Technol. 2014, 48, 620–629. [Google Scholar] [CrossRef]
- Isella, L.; Giechaskiel, B.; Drossinos, Y. Diesel-exhaust aerosol dynamics from the tailpipe to the dilution tunnel. J. Aerosol Sci. 2008, 39, 737–758. [Google Scholar] [CrossRef]
- Rigopoulos, S.; Jones, A.G. Finite-element scheme for solution of the dynamic population balance equation. AlChE J. 2003, 49, 1127–1139. [Google Scholar] [CrossRef]
- Wan, Z.; You, Z.; Sun, Z.; Yin, W. Method of Taylor expansion moment incorporating fractal theories for Brownian coagulation of fine particles. Int. J. Nonlinear Sci. Numer. Simul. 2012, 13, 459–467. [Google Scholar] [CrossRef]
- Dimakopoulos, Y.; Kelesidis, G.; Tsouka, S.; Georgiou, G.C.; Tsamopoulos, J. Hemodynamics in stenotic vessels of small diameter under steady state conditions: Effect of viscoelasticity and migration of red blood cells. Biorheology 2015, 52, 183–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kholghy, M.R.; Schumann, A. A Simple Model for Gas-Phase Synthesis of Nickel Nanoparticles. Energy Fuels 2021, 35, 5383–5391. [Google Scholar] [CrossRef]
- Tsantilis, S.; Kammler, H.K.; Pratsinis, S.E. Population balance modeling of flame synthesis of titania nanoparticles. Chem. Eng. Sci. 2002, 57, 2139–2156. [Google Scholar] [CrossRef]
- Xiong, Y.; Akhtar, M.K.; Pratsinis, S.E. Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. J. Aerosol Sci. 1993, 24, 301–313. [Google Scholar] [CrossRef]
- Kholghy, M.R.; Kelesidis, G.A. Surface growth, coagulation and oxidation of soot by a monodisperse population balance model. Combust. Flame 2021, 227, 456–463. [Google Scholar] [CrossRef]
- Heine, M.; Pratsinis, S.E. Brownian coagulation at high concentration. Langmuir 2007, 23, 9882–9890. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Kelesidis, G.A.; Kholghy, M.R.; Zuercher, J.; Robertz, J.; Allemann, M.; Duric, A.; Pratsinis, S.E. Light scattering from nanoparticle agglomerates. Powder Technol. 2020, 365, 52–59. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Pratsinis, S.E. A perspective on gas-phase synthesis of nanomaterials: Process design, impact and outlook. Chem. Eng. Sci. 2021, 421, 129884. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.; McMurry, P.H.; Pratsinis, S.E. Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. J. Colloid Interface Sci. 2012, 387, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meakin, P. Fractal aggregates. Adv. Colloid Interface Sci. 1987, 28, 249–331. [Google Scholar] [CrossRef]
- Katzer, M.; Weber, A.P.; Kasper, G. Collision kinetics and electrostatic dispersion of airborne submicrometer fractal agglomerates. J. Colloid Interface Sci. 2001, 240, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Medalia, A.I. Dynamic shape factors of particles. Powder Technol. 1971, 4, 117–138. [Google Scholar] [CrossRef]
- Wang, G.; Sorensen, C. Diffusive mobility of fractal aggregates over the entire Knudsen number range. Phys. Rev. E 1999, 60, 3036. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Pratsinis, S.E. Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 2014, 25, 71–90. [Google Scholar] [CrossRef]
- Gwaze, P.; Schmid, O.; Annegarn, H.J.; Andreae, M.O.; Huth, J.; Helas, G. Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J. Aerosol Sci. 2006, 37, 820–838. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Etterlin, G.D.; Spyrogianni, A.; Krumeich, F.; Leroux, J.-C.; Pratsinis, S.E. Plasmonic biocompatible silver–gold alloyed nanoparticles. Chem. Comm. 2014, 50, 13559–13562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, N.A.; Daisley, R.; Fuchs, M.; Davies, C.; Straumanis, M. The mechanics of aerosols. Phys. Today 1965, 18, 73. [Google Scholar] [CrossRef]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Xu, F.; Sunderland, P.; Faeth, G. Soot formation in laminar premixed ethylene/air flames at atmospheric pressure. Combust. Flame 1997, 108, 471–493. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelesidis, G.A.; Kholghy, M.R. A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime. Materials 2021, 14, 3882. https://doi.org/10.3390/ma14143882
Kelesidis GA, Kholghy MR. A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime. Materials. 2021; 14(14):3882. https://doi.org/10.3390/ma14143882
Chicago/Turabian StyleKelesidis, Georgios A., and M. Reza Kholghy. 2021. "A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime" Materials 14, no. 14: 3882. https://doi.org/10.3390/ma14143882
APA StyleKelesidis, G. A., & Kholghy, M. R. (2021). A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime. Materials, 14(14), 3882. https://doi.org/10.3390/ma14143882