Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems
Abstract
:1. Introduction
2. Modeling
3. Experiments
3.1. DSC Measurements
3.2. Experimental Data
4. Inverse Analysis
5. Results and Discussion
6. Conclusions
- The glass transition temperature depends on the degree of cure. In other words, the history is irrelevant, current value of the degree of cure is of importance.
- The cure kinetics are modeled by an evolution equation. Neighboring particles fail to affect the kinetics, there is no flux in this model, justified by chemical reactions occurring locally.
- The simplest model is the proposed one with 10 material parameters.
- Isothermal tests in a DSC are adequate to determine the all material parameters necessary to describe the curing kinetics.
- Nonlinear regression problem by solving a differential equation is challenging yet possible by using a trust region algorithm.
- Non-isothermal conditions are captured equally accurately showing that the proposed model is a valid material equation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marrucci, G.; Ianniruberto, G. Modelling nonlinear polymer rheology is still challenging. Korea-Aust. Rheol. J. 2005, 17, 111–116. [Google Scholar]
- Long, R.; Mayumi, K.; Creton, C.; Narita, T.; Hui, C.Y. Rheology of a dual crosslink self-healing gel: Theory and measurement using parallel-plate torsional rheometry. J. Rheol. 2015, 59, 643–665. [Google Scholar] [CrossRef]
- Abali, B.E.; Wu, C.C.; Müller, W.H. An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 2016, 28, 1221–1246. [Google Scholar] [CrossRef]
- Argatov, I.; Iantchenko, A.; Kocherbitov, V. How to define the storage and loss moduli for a rheologically nonlinear material? Contin. Mech. Thermodyn. 2017, 29, 1375–1387. [Google Scholar] [CrossRef]
- Bažant, Z.; Hubler, M.; Wendner, R. Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability. Mater. Struct. 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Marcon, M.; Vorel, J.; Ninčević, K.; Wan-Wendner, R. Modeling adhesive anchors in a discrete element framework. Materials 2017, 10, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, G.; Sinn, G.; Lichtenegger, H.C.; Veigel, S.; Zecchini, M.; Wan-Wendner, R. Evaluation of in situ shrinkage and expansion properties of polymer composite materials for adhesive anchor systems by a novel approach based on digital image correlation. Polym. Test. 2019, 79, 106035. [Google Scholar] [CrossRef]
- Bradler, P.R.; Fischer, J.; Wan-Wendner, R.; Lang, R.W. Shear test equipment for testing various polymeric materials by using standardized multipurpose specimens with minor adaptions. Polym. Test. 2019, 75, 93–98. [Google Scholar] [CrossRef]
- Fischer, J.; Bradler, P.R.; Schmidtbauer, D.; Lang, R.W.; Wan-Wendner, R. Long-term creep behavior of resin-based polymers in the construction industry. Mater. Today Commun. 2019, 18, 60–65. [Google Scholar] [CrossRef]
- Nase, M.; Rennert, M.; Naumenko, K.; Eremeyev, V.A. Identifying traction–separation behavior of self-adhesive polymeric films from in situ digital images under T-peeling. J. Mech. Phys. Solids 2016, 91, 40–55. [Google Scholar] [CrossRef]
- Ninčević, K.; Boumakis, I.; Meissl, S.; Wan-Wendner, R. Consistent time-to-failure tests and analyses of adhesive anchor systems. Appl. Sci. 2020, 10, 1527. [Google Scholar] [CrossRef] [Green Version]
- Bilyeu, B.; Brostow, W.; Menard, K.P. Epoxy thermosets and their applications. III. Kinetic equations and models. J. Mater. Educ. 2001, 23, 189–204. [Google Scholar]
- Urbaniak, M. A relationship between the glass transition temperature and the conversion degree in the curing reaction of the EPY epoxy system. Polimery 2011, 56, 240–243. [Google Scholar] [CrossRef]
- Benedetti, A.; Fernandes, P.; Granja, J.L.; Sena-Cruz, J.; Azenha, M. Influence of temperature on the curing of an epoxy adhesive and its influence on bond behaviour of NSM-CFRP systems. Compos. Part B Eng. 2016, 89, 219–229. [Google Scholar] [CrossRef]
- Lascano, D.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Montanes, N. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry. Polymers 2019, 11, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibowo, E.S.; Park, B.D. Cure kinetics of low-molar-ratio urea-formaldehyde resins reinforced with modified nanoclay using different kinetic analysis methods. Thermochim. Acta 2020, 686, 178552. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1966, 70, 487. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.A.; Pagani, N.; Riccardi, C.C.; Borrajo, J.; Goyanes, S.N.; Mondragon, I. Cure kinetics and shrinkage model for epoxy-amine systems. Polymer 2005, 46, 3323–3328. [Google Scholar] [CrossRef]
- Huang, X.; Patham, B. Experimental characterization of a curing thermoset epoxy-anhydride system—Isothermal and nonisothermal cure kinetics. J. Appl. Polym. Sci. 2013, 127, 1959–1966. [Google Scholar] [CrossRef]
- Kratz, J.; Mesogitis, T.; Skordos, A.; Hamerton, I.; Partridge, I.K. Developing Cure Kinetics Models for Interleaf Particle Toughened Epoxies. 2016. Available online: http://dspace.lib.cranfield.ac.uk/handle/1826/13791 (accessed on 1 May 2021).
- Ren, R.; Xiong, X.; Ma, X.; Liu, S.; Wang, J.; Chen, P.; Zeng, Y. Isothermal curing kinetics and mechanism of DGEBA epoxy resin with phthalide-containing aromatic diamine. Thermochim. Acta 2016, 623, 15–21. [Google Scholar] [CrossRef]
- Konuray, A.O.; Fernández-Francos, X.; Ramis, X. Curing kinetics and characterization of dual-curable thiol-acrylate-epoxy thermosets with latent reactivity. React. Funct. Polym. 2018, 122, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Abali, B.E. Thermodynamically Compatible Modeling, Determination of Material Parameters, and Numerical Analysis of Nonlinear Rheological Materials. Ph.D. Thesis, Technische Universität Berlin, Institute of Mechanics, Berlin, Germany, 2014. [Google Scholar]
- Abali, B.E. Inverse analysis of cellulose by using the energy-based method and a rotational rheometer. Appl. Sci. 2018, 8, 1354. [Google Scholar] [CrossRef] [Green Version]
- Abali, B.E.; Yang, H. Magnetorheological Elastomer’s Material Modeling and Parameter Determination by Using the Energy-based Method. In New Achievements in Continuum Mechanics and Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–15. [Google Scholar]
- Kiasat, M. Curing Shrinkage and Residual Stresses in Viscoelastic Thermosetting Resins and Composites. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 2000. [Google Scholar]
- Lion, A.; Höfer, P. On the phenomenological representation of curing phenomena in continuum mechanics. Arch. Mech. 2007, 59, 59–89. [Google Scholar]
- Mahnken, R. Thermodynamic consistent modeling of polymer curing coupled to visco—Elasticity at large strains. Int. J. Solids Struct. 2013, 50, 2003–2021. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M. Modelling the curing process in particle-filled electro-active polymers with a dispersion anisotropy. Contin. Mech. Thermodyn. 2020, 32, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Hossain, M.; Yao, X.; Mehnert, M.; Steinmann, P. On thermo-viscoelastic experimental characterization and numerical modelling of VHB polymer. Int. J. Non-Linear Mech. 2020, 118, 103263. [Google Scholar] [CrossRef]
- Hossain, M. Modelling and Computation of Polymer Curing. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2010. [Google Scholar]
- Mergheim, J.; Possart, G.; Steinmann, P. Modelling and computation of curing and damage of thermosets. Comput. Mater. Sci. 2012, 53, 359–367. [Google Scholar] [CrossRef]
- Sauer, R.A. A survey of computational models for adhesion. J. Adhes. 2016, 92, 81–120. [Google Scholar] [CrossRef]
- Landgraf, R. Modellierung und Simulation der Aushärtung Polymerer Werkstoffe. Ph.D. Thesis, TU Dresden, Dresden, Germany, 2016. [Google Scholar]
- Redmann, A.; Oehlmann, P.; Scheffler, T.; Kagermeier, L.; Osswald, T.A. Thermal curing kinetics optimization of epoxy resin in Digital Light Synthesis. Addit. Manuf. 2020, 32, 101018. [Google Scholar] [CrossRef]
- Redmann, A.; Osswald, T.A. A model for modulus development of dual-cure resin systems. Polym. Eng. Sci. 2021, 61, 830–835. [Google Scholar] [CrossRef]
- Shechter, L.; Wynstra, J.; Kurkjy, R.P. Glycidyl ether reactions with amines. Ind. Eng. Chem. 1956, 48, 94–97. [Google Scholar] [CrossRef]
- Kamal, M.; Sourour, S. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 1973, 13, 59–64. [Google Scholar] [CrossRef]
- Kamal, M.R. Thermoset characterization for moldability analysis. Polym. Eng. Sci. 1974, 14, 231–239. [Google Scholar] [CrossRef]
- Heinrich, C.; Aldridge, M.; Wineman, A.S.; Kieffer, J.; Waas, A.M.; Shahwan, K.W. Generation of heat and stress during the cure of polymers used in fiber composites. Int. J. Eng. Sci. 2012, 53, 85–111. [Google Scholar] [CrossRef]
- Angell, C.A. Perspective on the glass transition. J. Phys. Chem. Solids 1988, 49, 863–871. [Google Scholar] [CrossRef]
- Flammersheim, H.J.; Opfermann, J.R. Investigation of epoxide curing reactions by differential scanning calorimetry—Formal kinetic evaluation. Macromol. Mater. Eng. 2001, 286, 143–150. [Google Scholar] [CrossRef]
- Chern, C.S.; Poehlein, G.W. A kinetic model for curing reactions of epoxides with amines. Polym. Eng. Sci. 1987, 27, 788–795. [Google Scholar] [CrossRef]
- Wise, C.W.; Cook, W.D.; Goodwin, A.A. Chemico-diffusion kinetics of model epoxy-amine resins. Polymer 1997, 38, 3251–3261. [Google Scholar] [CrossRef]
- Rabinowitch, E. Collision, co-ordination, diffusion and reaction velocity in condensed systems. Trans. Faraday Soc. 1937, 33, 1225–1233. [Google Scholar] [CrossRef]
- Hesekamp, D.; Broecker, H.C.; Pahl, M.H. Chemo-Rheology of Cross-Linking Polymers. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 1998, 21, 149–153. [Google Scholar] [CrossRef]
- DiBenedetto, E. Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 1983, 32, 83–118. [Google Scholar] [CrossRef]
- Venditti, R.; Gillham, J. A relationship between the glass transition temperature (Tg) and fractional conversion for thermosetting systems. J. Appl. Polym. Sci. 1997, 64, 3–14. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg–Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1978; pp. 105–116. [Google Scholar]
- Byrd, R.H.; Schnabel, R.B.; Shultz, G.A. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math. Program. 1988, 40, 247–263. [Google Scholar] [CrossRef]
- Branch, M.A.; Coleman, T.F.; Li, Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 1999, 21, 1–23. [Google Scholar] [CrossRef]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In International Workshop on Vision Algorithms; Springer: Berlin/Heidelberg, Germany, 1999; pp. 298–372. [Google Scholar]
- Abali, B.E.; Vorel, J.; Wan-Wendner, R. Thermo-mechano-chemical modeling and computation of thermosetting polymers used in post-installed fastening systems in concrete structures. Contin. Mech. Thermodyn. 2020. [Google Scholar] [CrossRef]
Material | Degree of Cure, | Glass Transition Temperature, | Curing |
---|---|---|---|
A | 0.910 | 63 C | 30 C/20 h |
0.920 | 64 C | 30 C/20 h | |
0.920 | 64 C | 30 C/18 h | |
0.970 | 68 C | 40 C/5.5 h | |
0.970 | 72 C | 40 C/18 h | |
0.990 | 81 C | 60 C/2.25 h | |
0.990 | 81 C | 60 C/2.25 h | |
0.990 | 84 C | 60 C/17 h | |
1.000 | 82 C | 80 C/1 h | |
1.000 | 81 C | 80 C/1 h | |
1.000 | 80 C | 80 C/2 h | |
B | 0.820 | 50 C | 23 C/15 h |
0.840 | 57 C | 23 C/24 h + 23 C/24 h | |
0.900 | 64 C | 30 C/20 h | |
0.900 | 63 C | 23 C/24 h + 33 C/24 h | |
0.930 | 66 C | 40 C/17 h | |
0.950 | 71 C | 23 C/24 h + 43 C/24 h | |
0.950 | 67 C | 60 C/2.2 h | |
0.975 | 78 C | 80 C/1 h | |
0.980 | 81 C | 23 C/24 h + 110 C/24 h |
in 1/s | in 1/s | in G | in G | in G | |||
---|---|---|---|---|---|---|---|
Lower bounds | 1 | 1 | 100 | 100 | 10 | 10 | 10 |
Upper bound |
at C | 10 min | 90 min | 150 min | 300 min | |
---|---|---|---|---|---|
Degree of cure, | Error | ||||
Experiment | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C | |||||
C |
Material A | Material B | ||||
---|---|---|---|---|---|
Variable | Value | Unit | Variable | Value | Unit |
9 | C | 9 | C | ||
82 | C | 83 | C | ||
- | - | ||||
76,747 | 1/s | 96,748 | 1/s | ||
7500 | 1/s | 11,012 | 1/s | ||
45,966 | G | 46,440 | G | ||
48,319 | G | 49,462 | G | ||
740 | G | G | |||
- | - | ||||
- | - |
Degree of Cure | Relative Change | ||||
---|---|---|---|---|---|
Variable | Ref | +10% | −10% | +10% | −10% |
−19% | +6% | ||||
−3% | +4% | ||||
0% | 0% | ||||
1% | −1% | ||||
0% | 0% | ||||
−26% | +4% | ||||
−3% | +4% | ||||
+1% | −1% | ||||
−9% | +5% | ||||
−2% | +3% |
Material | Curing | Experimental | Simulation | Relative Error |
---|---|---|---|---|
30 C/20 h | 0.910 | 0.918 | 0.9% | |
30 C/18 h | 0.920 | 0.916 | 0.4% | |
40 C/5.5 h | 0.970 | 0.936 | 3.7% | |
40 C/18 h | 0.970 | 0.954 | 1.7% | |
A | 60 C/2.25 h | 0.990 | 0.971 | 2.0% |
60 C/17 h | 0.990 | 0.994 | 0.4% | |
80 C/1 h | 1.000 | 0.975 | 2.5% | |
80 C/2 h | 1.000 | 0.988 | 1.2% | |
23 C/15 h | 0.820 | 0.848 | 3.3% | |
23 C/24 h + 23 C/24 h | 0.840 | 0.903 | 7.0% | |
30 C/20 h | 0.900 | 0.897 | 0.3% | |
23 C/24 h + 33 C/24 h | 0.900 | 0.924 | 2.6% | |
B | 40 C/17 h | 0.930 | 0.930 | 0.1% |
23 C/24 h + 43 C/24 h | 0.950 | 0.949 | 0.1% | |
60 C/2.2 h | 0.950 | 0.955 | 0.5% | |
80 C/1 h | 0.975 | 0.977 | 0.2% | |
23 C/24 h + 110 C/24 h | 0.980 | 1.000 | 2.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abali, B.E.; Zecchini, M.; Daissè, G.; Czabany, I.; Gindl-Altmutter, W.; Wan-Wendner, R. Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems. Materials 2021, 14, 3853. https://doi.org/10.3390/ma14143853
Abali BE, Zecchini M, Daissè G, Czabany I, Gindl-Altmutter W, Wan-Wendner R. Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems. Materials. 2021; 14(14):3853. https://doi.org/10.3390/ma14143853
Chicago/Turabian StyleAbali, Bilen Emek, Michele Zecchini, Gilda Daissè, Ivana Czabany, Wolfgang Gindl-Altmutter, and Roman Wan-Wendner. 2021. "Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems" Materials 14, no. 14: 3853. https://doi.org/10.3390/ma14143853
APA StyleAbali, B. E., Zecchini, M., Daissè, G., Czabany, I., Gindl-Altmutter, W., & Wan-Wendner, R. (2021). Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems. Materials, 14(14), 3853. https://doi.org/10.3390/ma14143853