CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of CS–CaCO3 Composites Materials
2.3. Characterization
2.4. Cell Viability Study
2.5. In Vitro Blood Plasma Coagulation Assay
2.6. Blood Coagulation Time
2.7. Adherence of RBC (Red blood cell) and Platelet on CaCO3 and CS–CaCO3 Composite Material
2.8. Water Absorption Efficiency In Vitro
2.9. Hemolysis Assay
2.10. In Vivo Wound Healing
3. Result and Discussion
3.1. Characterization of the Prepared of CaCO3 and CS–CaCO3 Composites Materials
3.2. Fluid Sorption Capability
3.3. Cytotoxicity Tests of the CS–CaCO3
3.4. Blood Clotting Activity
3.5. Hemolytic Activity
3.6. Platelet Adhesion
3.7. Wound Healing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, H.B.; Burris, D.; DaCorta, J.A.; Rhee, P. Hemorrhage Control in the Battlefield: Role of New Hemostatic Agents. Mil. Med. 2005, 170, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abassi, Z.A.; Okun-Gurevich, M.; Abu Salah, N.; Awad, H.; Mandel, Y.; Campino, G.; Mahajna, A.; Feuerstein, G.Z.; Fitzpatrick, M.; Hoffman, A.; et al. Potential Early Predictors for Outcomes of Experimental Hemorrhagic Shock Induced by Un-controlled Internal Bleeding in Rats. PLoS ONE 2013, 8, e80862. [Google Scholar] [CrossRef] [PubMed]
- Gaston, E.; Fraser, J.F.; Xu, Z.P.; Ta, H.T. Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Pusateri, A.E.; Holcomb, J.B.; Kheirabadi, B.S.; Alam, H.B.; Wade, C.E.; Ryan, K.L. Making Sense of the Preclinical Literature on Advanced Hemostatic Products. J. Trauma Inj. Infect. Crit. Care 2006, 60, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Alwaal, A.; Lee, Y.-C.; Reed-Maldonado, A.; Spangler, T.A.; Banie, L.; O’Hara, R.B.; Lin, G. Comparison of Topical Hemostatic Agents in a Swine Model of Extremity Arterial Hemorrhage: BloodSTOP iX Battle Matrix vs. QuikClot Combat Gauze. Int. J. Mol. Sci. 2016, 17, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otrocka-Domagała, I.; Jastrzębski, P.; Adamiak, Z.; Paździor-Czapula, K.; Gesek, M.; Mikiewicz, M.; Rotkiewicz, T. Safety of the long-term application of QuikClot Combat Gauze, ChitoGauze PRO and Celox Gauze in a femoral artery injury model in swine—A preliminary study. Pol. J. Vet. Sci. 2016, 19, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlejohn, L.F.; Devlin, J.J.; Kircher, S.S.; Lueken, R.; Melia, M.R.; Johnson, A.S. Comparison of Celox-A, ChitoFlex, WoundStat, and Combat Gauze Hemostatic Agents Versus Standard Gauze Dressing in Control of Hemorrhage in a Swine Model of Penetrating Trauma. Acad. Emerg. Med. 2011, 18, 340–350. [Google Scholar] [CrossRef]
- Kheirabadi, B.S.; Scherer, M.R.; Estep, J.S.; Dubick, M.A.; Holcomb, J.B. Determination of Efficacy of New Hemostatic Dressings in a Model of Extremity Arterial Hemorrhage in Swine. J. Trauma Inj. Infect. Crit. Care 2009, 67, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Bae, O.-N.; Chung, S.-M.; Kang, K.-T.; Lee, J.-Y.; Chung, J.-H. Enhancement of Platelet Aggregation and Thrombus Formation by Arsenic in Drinking Water: A Contributing Factor to Cardiovascular Disease. Toxicol. Appl. Pharmacol. 2002, 179, 83–88. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Shrivastava, S.; Grácio, J.; Dash, D. Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets. ACS Nano 2011, 5, 4987–4996. [Google Scholar] [CrossRef]
- Arnaud, F.; Tomori, T.; Carr, W.; McKeague, A.; Teranishi, K.; Prusaczyk, K.; McCarron, R. Exothermic reaction in zeolite hemostatic dressings: QuikClot ACS and ACS+(R). Ann. Biomed. Eng. 2008, 36, 1708–1713. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Niu, H.; Duan, B.; Ma, X.; Hong, H.; Yuan, Y.; Liu, C. A Novel Droplet-Fabricated Mesoporous Silica-Based Nanohybrid Granules for Hemorrhage Control. J. Biomed. Nanotechnol. 2018, 14, 649–661. [Google Scholar] [CrossRef]
- De Castro, G.P.; Dowling, M.B.; Kilbourne, M.; Keledjian, K.; Driscoll, I.R.; Raghavan, S.R.; Hess, J.R.; Scalea, T.M.; Bochicchio, G.V. Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. J. Trauma: Inj. Infect. Crit. Care 2012, 72, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.K.; Lee, O.S.; Kang, T.J.; Lim, S.C. Wound healing effect of cuttlebone extract in burn injury of rat. Food Sci. Biotechnol. 2013, 22, 99–105. [Google Scholar] [CrossRef]
- Lv, L.; Tang, F.; Lan, G. Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material. RSC Adv. 2016, 6, 95358–95368. [Google Scholar] [CrossRef]
- Garcia, J.G.N.; Patterson, C.; Bahler, C.; Aschner, J.; Hart, C.M.; English, D. Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth-factor messenger-rna expression in cultured endothelium. J. Cell. Physiol. 1993, 156, 541–549. [Google Scholar] [CrossRef]
- Cavallini, L.; Alexandre, A. Ca2+ efflux from platelets. Control by protein kinase C and the filling state of the intracellular Ca2+ stores. JBIC J. Biol. Inorg. Chem. 1994, 222, 693–702. [Google Scholar] [CrossRef]
- Franke, B.; Akkerman, J.N.; Bos, J.L. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 1997, 16, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Alonso, M.T.; Alvarez, J.; Montero, M.; Sanchez, A.; García-Sancho, J. Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochem. J. 1991, 280, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Varga-Szabo, D.; Braun, A.; Nieswandt, B. Calcium signaling in platelets. J. Thromb. Haemost. 2009, 7, 1057–1066. [Google Scholar] [CrossRef]
- Kahn, M.L.; Zheng, Y.-W.; Huang, W.; Bigornia, V.; Zeng, D.; Moff, S.L.; Jr, R.V.F.; Tam-Amersdorfer, C.; Coughlin, S.R. A dual thrombin receptor system for platelet activation. Nat. Cell Biol. 1998, 394, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Shamshina, J.L.; Gurau, G.; Block, L.E.; Hansen, L.K.; Dingee, C.; Walters, A.; Rogers, R.D. Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. J. Mater. Chem. B 2014, 2, 3924–3936. [Google Scholar] [CrossRef]
- Francesko, A.; Tzanov, T. Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering. In Biofunctionalization of Polymers and Their Applications; Nyanhongo, G.S., Steiner, W., Gubitz, G.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 125, pp. 1–27. [Google Scholar]
- Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Agboh, O.C.; Qin, Y. Chitin and chitosan fibers. Polym. Adv. Technol. 1997, 8, 355–365. [Google Scholar] [CrossRef]
- Ong, S.-Y.; Wu, J.; Moochhala, S.M.; Tan, M.-H.; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332. [Google Scholar] [CrossRef]
- Rao, S.B.; Sharma, C.P. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J. Biomed. Mater. Res. 1997, 34, 21–28. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Seo, S.-J.; Moon, H.-S.; Yoo, M.-K.; Park, I.-Y.; Kim, B.-C.; Cho, C.-S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tian, F.; Wang, Z.; Wang, Q.; Zeng, Y.-J.; Chen, S.-Q. Effect of chitosan molecular weight and deacetylation degree on hemostasis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 84, 131–137. [Google Scholar] [CrossRef]
- Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G.H. Production of Chitooligosaccharides and Their Potential Applications in Medicine. Mar. Drugs 2010, 8, 1482–1517. [Google Scholar] [CrossRef] [Green Version]
- Klokkevold, P.R.; Fukayama, H.; Sung, E.C.; Bertolami, C.N. The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J. Oral Maxillofac. Surg. 1999, 57, 49–52. [Google Scholar] [CrossRef]
- Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 2005, 102, 383–394. [Google Scholar] [CrossRef]
- Wang, Y.N.; Fu, Y.M.; Li, J.; Mu, Y.Z.; Zhang, X.; Zhang, K.C.; Liang, M.Q.; Feng, C.; Chen, X.G. Multifunctional chi-tosan/dopamine/diatom-biosilica composite beads for rapid blood coagulation. Carbohydr. Polym. 2018, 200, 6–14. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Su, Y.-P.; Chen, C.-C.; Jia, G.; Wang, H.-L.; Wu, J.C.G.; Lin, J.-G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 2004, 25, 932–936. [Google Scholar]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Reinthaler, M.; Braune, S.; Lendlein, A.; Landmesser, U.; Jung, F. Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases 2016, 11, 029702. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhao, Q.H.; Gao, C.Y. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multi-layers-coated CaCO3 microparticles. Colloid Surf. A Physicochem. Eng. Asp. 2010, 353, 132–139. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.-S.; Zong, J.-Y.; Zhao, D.; Li, F.; Zhuo, R.-X.; Cheng, S.-X. Calcium Carbonate/Carboxymethyl Chitosan Hybrid Microspheres and Nanospheres for Drug Delivery. J. Phys. Chem. C 2010, 114, 18940–18945. [Google Scholar] [CrossRef]
- Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein Encapsulation via Porous CaCO3 Microparticles Templating. Biomacromolecules 2004, 5, 1962–1972. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Liu, J.; Xu, Y.; Wang, Y.; Ren, H.; Li, X. Acetate chitosan with CaCO3 doping form tough hydrogel for hemostasis and wound healing. Polym. Adv. Technol. 2019, 30, 143–152. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Huang, X.; Zhang, J.; Zhu, Y.; Liu, Y.; Liu, B.; Wang, Q.; Huang, X.; He, D. CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials 2021, 14, 3350. https://doi.org/10.3390/ma14123350
He W, Huang X, Zhang J, Zhu Y, Liu Y, Liu B, Wang Q, Huang X, He D. CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials. 2021; 14(12):3350. https://doi.org/10.3390/ma14123350
Chicago/Turabian StyleHe, Wei, Xiaodong Huang, Jun Zhang, Yue Zhu, Yajun Liu, Bo Liu, Qilong Wang, Xiaonan Huang, and Da He. 2021. "CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing" Materials 14, no. 12: 3350. https://doi.org/10.3390/ma14123350
APA StyleHe, W., Huang, X., Zhang, J., Zhu, Y., Liu, Y., Liu, B., Wang, Q., Huang, X., & He, D. (2021). CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials, 14(12), 3350. https://doi.org/10.3390/ma14123350