Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FGMs
2.3. Characterization
3. Results and Discussion
3.1. Microstructure of FGMs
3.2. Interfacial Characteristics of FGMs
3.3. Properties of FGMs
3.4. Diamond Distribution of FGMs
4. Conclusions
- From the bottom center of the shell to the top of the wall, the contents of the diamond particles are 48 vol.%, 45 vol.%, 36 vol.%, 27 vol.%, and 15 vol.%, respectively. The gradual change in the structure of the packaging shell, reducing the thermal stress and residual stress, helps to improve the thermal stability of the packaging components.
- The interface of the diamond/Al graded composites presents a mixed bonding state including the diffusion-bonded and partially diffusion-bonded states. The partially diffusion-bonded interface is not enough to form the ligament connecting diamond particles and Al, and reduces the properties of the composites.
- With the decrease in diamond content, the TC of the composites decreased, while the bending strength and CTE increased. The graded distribution perfectly solves the special requirements at different parts of the packaging shell for performance and helps to improve the thermal stability of packaging components.
- The sample at the bottom of the shell has the lowest CTE (11.0 × 10−6/K) and the highest TC (169 W/m·K); such performance ensures that the CTE of the composites is matched with the CTE of the chip, and dissipates the heat generated by the chip calculation in a timely and effective manner. The sample at the top of the wall of the shell has the highest CTE (19.3 × 10−6/K), which is close to the CTE of the metal cover plate, ensuring good weldability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, A.L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Maiorano, L.P.; Molina, J.M. Guiding heat in active thermal management: One-pot incorporation of interfacial nano-engineered aluminium/diamond composites into aluminium foams. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105859. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Q.P.; An, J.J.; Li, M.; Zhou, K.C.; Ye, W.T.; Yu, Z.M.; Gan, X.P.; Lin, C.T.; Luo, J.T. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem. Eng. J. 2020, 380, 122551. [Google Scholar] [CrossRef]
- Chak, V.; Chattopadhyay, H.; Dora, T.L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Process. 2020, 56, 1059–1074. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, X.; Yin, Z.; Li, Y.Q.; Liu, C.; Liu, S.B.; Wu, C.J.; Liu, J.Y. The fabrication of functional gradient hypereutectic Al-Si composites by liquid-solid separation technology. J. Alloys Compd. 2018, 763, 49–55. [Google Scholar] [CrossRef]
- Zhou, W.B.; Ai, S.G.; Chen, M.J.; Zhang, R.B.; He, R.J.; Pei, Y.M.; Fang, D.N. Preparation and thermodynamic analysis of the porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint. Compos. Part B Eng. 2015, 82, 13–22. [Google Scholar] [CrossRef]
- Bui, T.Q.; Do, T.V.; Lan, H.T.T.; Doan, D.H.; Tanaka, S.; Pham, D.T.; Nguyen-Van, T.A.; Yu, T.; Hirose, S. On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. Part B Eng. 2016, 92, 218–241. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, S.B.; Zhang, L.; Guo, S. Microstructure and thermal properties of Diamond-Al composite fabricated by pressureless metal infiltration. Adv. Mater. Res. 2010, 150, 1110–1118. [Google Scholar] [CrossRef]
- Li, N.; Wang, L.H.; Dai, J.J.; Wang, X.T.; Wang, J.G.; Kim, M.J.; Zhang, H.L. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diam. Relat. Mater. 2019, 100, 107565. [Google Scholar] [CrossRef]
- Ma, S.D.; Zhao, N.Q.; Shi, C.S.; Liu, E.Z.; He, C.N.; He, F.; Ma, L.Y. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci. 2017, 402, 372–383. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhang, C.; He, L.K.; Meng, Q.N.; Liu, B.C.; Gao, K.; Wu, J.H. Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating. Sci. Rep. 2018, 8, 11104. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, Z.Y.; Wang, R.C.; Peng, C.Q.; Qiu, K.; Wang, N.G. Microstructure and thermal properties of Al/W-coated diamond composites prepared by powder metallurgy. Mater. Des. 2016, 95, 39–47. [Google Scholar] [CrossRef]
- Mizuuchi, K.; Inoue, K.; Agari, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J.-i.; Kawahara, M.; Makino, Y.; Ito, M. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al–matrix composite fabricated by SPS. Microelectron. Reliab. 2014, 54, 2463–2470. [Google Scholar] [CrossRef]
- Xin, L.; Xing, T.; Shu, Y.W.; Qin, C.G.; Jing, Q.; Jiao, H.F.; Qiang, Z.; Hui, W.G. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method. J. Alloys Compd. 2018, 763, 305–313. [Google Scholar] [CrossRef]
- Kwon, H.; Leparoux, M.; Heintz, J.-M.; Silvain, J.-F.; Kawasaki, A. Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route. Met. Mater. Int. 2011, 17, 755–763. [Google Scholar] [CrossRef]
- Monje, I.E.; Louis, E.; Molina, J.M. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J. Mater. Sci. 2016, 51, 8027–8036. [Google Scholar] [CrossRef]
- Khalid, F.A.; Beffort, O.; Klotz, U.E.; Keller, B.A.; Gasser, P. Microstructure and interfacial characteristics of aluminium-diamond composite materials. Diam. Relat. Mater. 2004, 13, 393–400. [Google Scholar] [CrossRef]
- Rodriguez-Reyes, M.; Pech-Canul, M.I.; Parga-Torres, J.R.; Acevedo-Davila, J.L.; Sanchez-Araiza, M.; Lopez, H.F. Development of aluminum hydroxides in Al-Mg-Si/SiCp in infiltrated composites exposed to moist air. Ceram. Int. 2011, 37, 2719–2722. [Google Scholar] [CrossRef]
- Tan, Z.Q.; Li, Z.Q.; Xiong, D.B.; Fan, G.L.; Ji, G.; Zhang, D. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Mater. Des. 2014, 55, 257–262. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Yin, Y.L.; Shi, Z.L.; Wu, C.J.; Liu, J.Y. The fabrication of Al-diamond composites for heat dissipation by liquid–solid separation technology. J. Mater. Sci. Mater. Electron. 2017, 28, 721–728. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Ran, M.R.; Li, Y.Q.; Zhang, W.D.; Liu, J.Y.; Zheng, W.Y. Effect of diamond particle size on the thermal properties of diamond/Al composites for package substrate. Acta. Metall. Sin. 2021, 1–13. [Google Scholar] [CrossRef]
- Chu, K.; Jia, C.C.; Liang, X.B.; Chen, H.; Gao, W.J. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Rare Met. 2009, 28, 646–650. [Google Scholar] [CrossRef]
- Kang, X.M.; Cheng, X.Q.; Zhang, J.K.; Li, Z.N.; Cui, Y. Tensile, compressive and flexible properties of high volume fraction SiCP/Al composites. Acta Mater. Compos. Sin. 2008, 25, 127–131. [Google Scholar]
- Rahvard, M.M.; Tamizifar, M.; Boutorabi, S.M.A.; Gholami Shiri, S. Characterization of the graded distribution of primary particles and wear behavior in the A390 alloy ring with various Mg contents fabricated by centrifugal casting. Mater. Des. 2014, 56, 105–114. [Google Scholar] [CrossRef]
- Sang, J.Q.; Zhou, L.P.; Yang, W.L.; Zhu, J.J.; Fu, L.C.; Li, D.Y. Enhanced thermal conductivity of copper/diamond composites by fine-regulating microstructure of interfacial tungsten buffer layer. J. Alloys Compd. 2021, 856, 157440. [Google Scholar] [CrossRef]
- Schöbel, M.; Degischer, H.P.; Vaucher, S.; Hofmann, M.; Cloetens, P. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Mater. 2010, 58, 6421–6430. [Google Scholar] [CrossRef]
- Tan, Z.Q.; Ji, G.; Addad, A.; Li, Z.Q.; Silvain, J.-F.; Zhang, D. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Compos. Part A Appl. Sci. Manuf. 2016, 91, 9–19. [Google Scholar] [CrossRef]
- Chen, G.Q.; Yang, W.S.; Xin, L.; Wang, P.P.; Liu, S.F.; Qiao, J.; Hu, F.J.; Zhang, Q.; Wu, G.H. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J. Alloys Compd. 2018, 735, 777–786. [Google Scholar] [CrossRef]
- Tan, Z.Q.; Chen, Z.Z.; Fan, G.L.; Ji, G.; Zhang, J.; Xu, R.; Shan, A.D.; Li, Z.Q.; Zhang, D. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Mater. Des. 2016, 90, 845–851. [Google Scholar] [CrossRef]
- Kerner, E.H. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. Sect. B 1956, 69, 808–813. [Google Scholar] [CrossRef]
- Li, J.W.; Zhang, H.L.; Wang, L.H.; Che, Z.F.; Zhang, Y.; Wang, J.G.; Kim, M.J.; Wang, X.T. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration. Compos. Part A Appl. Sci. Manuf. 2016, 91, 189–194. [Google Scholar] [CrossRef]
- Edtmaier, C.; Segl, J.; Koos, R.; Schöbel, M.; Feldbaumer, C. Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions. Diam. Relat. Mater. 2020, 106, 107842. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, W.G.; Wang, D.; Ni, D.R.; Chen, L.Q.; Ma, Z.Y. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites. Mater. Chem. Phys. 2016, 182, 256–262. [Google Scholar] [CrossRef]
Position | Bending Strength (MPa) | TC (W/m·K) | CTE (10−6/K) | Diamond Content (vol.%) |
---|---|---|---|---|
O | 88.47 | 169.36 | 11.0 | 48.43 ‡ |
H | 96.77 | 161.38 | 11.8 | 45.14 ‡ |
C | 113.60 | 150.02 | 13.8 | 36.18 ‡ |
B | 135.86 | 135.65 | 16.2 | 26.66 ‡ |
A | 174.72 | 108.25 | 19.3 | 14.69 ‡ |
Material | CTE (10−6/K) | Bulk Modulus (GPa) | Shear Modulus (GPa) |
---|---|---|---|
Al | 23.5 | 76 | 26 |
Diamond | 1.2 | 442 | 478 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Li, Y.; Wang, H.; Ran, M.; Tong, Z.; Zhang, W.; Liu, J.; Zheng, W. Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology. Materials 2021, 14, 3205. https://doi.org/10.3390/ma14123205
Zhou H, Li Y, Wang H, Ran M, Tong Z, Zhang W, Liu J, Zheng W. Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology. Materials. 2021; 14(12):3205. https://doi.org/10.3390/ma14123205
Chicago/Turabian StyleZhou, Hongyu, Yaqiang Li, Huimin Wang, Minrui Ran, Zhi Tong, Weidong Zhang, Junyou Liu, and Wenyue Zheng. 2021. "Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology" Materials 14, no. 12: 3205. https://doi.org/10.3390/ma14123205
APA StyleZhou, H., Li, Y., Wang, H., Ran, M., Tong, Z., Zhang, W., Liu, J., & Zheng, W. (2021). Fabrication of Functionally Graded Diamond/Al Composites by Liquid–Solid Separation Technology. Materials, 14(12), 3205. https://doi.org/10.3390/ma14123205