Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Carbon Nonwovens
2.2. General Procedure for the Functionalization of Carbon Nonwoven Fabric by Using In Situ Generated Diazonium Salts
2.2.1. Functionalization of CF with 4-Bromoaniline, Preparation of CF-1a
2.2.2. Functionalization of CF with 4-Chloroaniline, Preparation of CF-1b
2.2.3. Functionalization of CF with 4-Aminobenzoic Acid, Preparation of CF-1c
2.2.4. Functionalization of CF with 1,4-Diaminobenzene, Preparation of CF-1d
2.2.5. Functionalization of CF with 4-Aminophenol, Preparation of CF-1e
2.3. Attachment of Ethylenediamine to the Carbon Nonwoven Containing a Free Carboxyl Group on the Surface (CF-1c). Synthesis of Modified Nonwoven CF-2
2.4. Incorporation of a Peptide Containing an RGD Motif to the Surface of a Carbon Nonwoven Fabric CF-C6H4-CONH-(CH2)2-NH2 (CF-2). SYNTHESIS of CF-C6H4-CONH-(CH2)2-NHCO-DGR-Ac (CF-3)
2.5. Synthesis of Ac-RGD-OH
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saito, N.; Aoki, K.; Usui, Y.; Shimzu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; et al. Application of carbon fibres to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824–3834. [Google Scholar] [CrossRef]
- Mikołajczyk, T.; Boguń, M.; Błażewicz, M.; Piekarczyk, I. Effect of spinning conditions on the structure and properties of PAN fibers containing nano-hydroxyapatite. J. Appl. Polym. Sci. 2006, 100, 2881–2888. [Google Scholar] [CrossRef]
- Frączek-Szczypta, A.; Rabiej, S.; Szparaga, G.; Pabjańczyk-Wlazło, E.; Król, P.; Brzezińska, M.; Błażewicz, S.; Bogun, M. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 336–345. [Google Scholar] [CrossRef]
- Rajzer, I.; Menaszek, E.; Bacakova, L.; Orzelski, M.; Błażewicz, M. Hyaluronic Acid-Coated Carbon Nonwoven Fabrics as Potential Material for Repair of Osteochondral Defects for medical applications. Fibres Text. East. Eur. 2013, 99, 102–107. [Google Scholar]
- Yu, W.; Zhang, H.A.L.; Yang, S.; Zhang, J.; Wang, H.; Zhou, Z.; Zhou, Y.; Zhao, J.; Jiang, Z. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf. B Biointerfaces 2020, 193, 111098. [Google Scholar] [CrossRef]
- Qin, W.; Li, Y.; Ma, J.; Liang, Q.; Cui, X.; Jia, H.; Tang, B. Osseointegration and biosafety of Graphene oxide wrapped porous CF/PEEK composites as implantable materials: The role of Surface structure and chemistry. Dent. Mater. 2020, 36, 1289–1302. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J. Surface Treatment of Carbon Fibers—A Review. Proc. Technol. 2014, 14, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdynstev, V.V.; Kaloshkin, S.D. Surface modification of carbon fibers and its effect on the fiber—Matrix interaction of UHMWPE based composites. J. Alloys Compd. 2014, 586, 459–463. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J.; Panier, S. Tribological studies on Polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear 2011, 271, 2252–2260. [Google Scholar] [CrossRef]
- Donnet, J.B.; Brendle, M.; Dhami, T.L.; Bahl, O.P. Plasma treatment effect on the surface energy of carbon and CFs. Carbon 1986, 24, 757–770. [Google Scholar] [CrossRef]
- Cho, B.-G.; Hwang, S.-H.; Park, M.; Park, J.K.; Park, Y.-B.; Chae, H.G. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos. B. Eng. 2019, 160, 436–445. [Google Scholar] [CrossRef]
- Severini, F.; Formaro, L.; Pegoraro, M.; Posca, L. Chemical modification of carbon fiber surfaces. Carbon 2002, 40, 735–741. [Google Scholar] [CrossRef]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.A.; Salmi, Z.; Dahoumane, S.A.; Mekki, A.; Carbonnier, B.; Chehimi, M.M. Functionalization of nanomaterials with aryldiazonium salts. Adv. Colloid. Interface Sci. 2015, 225, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Bahr, J.L.; Yang, J.; Kosynkin, D.V.; Bronikowski, M.J.; Smalley, R.E.; Tour, J.M. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Integrated Affinity Biosensing Platforms on Screen-Printed Electrodes Electrografted with Diazonium Salts. Sensors 2018, 18, 675. [Google Scholar] [CrossRef] [Green Version]
- Frączyk, J.; Rosowski, A.; Kolesinska, B.; Koperkiewcz, A.; Sobczyk-Guzenda, A.; Kaminski, Z.J.; Dudek, M. Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives. Nanomaterials 2018, 8, 908. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.L.; Jian, H.; Leonard, A.D.; Stephenson, J.J.; Tour, J.M. Molecular grafting to silicon surfaces in air using organic triazenes as stable diazonium sources and HF as a constant hydride-passivation source. Chem. Mater. 2006, 18, 2766–2770. [Google Scholar] [CrossRef]
- Dyke, C.A.; Tour, J.M. Solvent-Free Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157. [Google Scholar] [CrossRef]
- Bellis, S.L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 2011, 32, 4205–4210. [Google Scholar] [CrossRef] [Green Version]
- Alipour, M.; Baneshi, M.; Hosseinkhani, S.; Mahmoudi, R.; Arabzadeh, A.J.; Akrami, M.; Mehrzad, J.; Bardania, H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J. Biomed. Mater. Res. A 2020, 108, 839–850. [Google Scholar] [CrossRef]
- Sevostianova, V.V.; Antonova, L.V.; Mironov, A.V.; Yuzhalin, A.E.; Silnikov, V.N.; Glushkova, T.V.; Godovikova, T.S.; Krivkina, E.O.; Bolbasov, E.; Akentyeva, T.N.; et al. Biodegradable Patches for Arterial Reconstruction Modified with RGD Peptides: Results of an Experimental Study. ACS Omega 2020, 5, 21700–21711. [Google Scholar] [CrossRef]
- Cha, C.; Liechty, W.B.; Khademhosseini, A.; Peppas, N.A. Designing Biomaterials to Direct Stem Cell Fate. ACS Nano 2012, 6, 9353–9358. [Google Scholar] [CrossRef] [Green Version]
- Lecarpentier, Y.; Kindler, V.; Bochaton-Piallat, M.-L.; Sakic, A.; Claes, V.; Hébert, J.-L.; Vallée, A.; Schussler, O. Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the nonmuscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold. PLoS ONE 2019, 14, e0222683. [Google Scholar] [CrossRef]
- Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984, 309, 30–33. [Google Scholar] [CrossRef]
- Kapp, T.G.; Rechenmacher, F.; Sobahi, T.R.; Kessler, H. Integrin modulators: A patent review. Expert Opin. Thr. Pat. 2013, 23, 1273–1295. [Google Scholar] [CrossRef]
- Kapp, T.G.; Rechenmacher, F.; Neubauer, S.; Maltsev, O.V.; Cavalcanti-Adam, E.A.; Zarka, R.; Reuning, U.; Notni, J.; Wester, H.-J.; Mas-Moruno, C.; et al. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Sci. Rep. 2017, 7, 39805. [Google Scholar] [CrossRef] [Green Version]
- Green, H.J.; Brown, N.H. Integrin intracellular machinery in action. Exp. Cell Res. 2019, 378, 226–231. [Google Scholar] [CrossRef]
- Bachmann, M.; Kukkurainen, S.; Hytönen, V.P.; Wehrle-Haller, B. Cell Adhesion by Integrins. Physiol. Rev. 2019, 99, 1655–1699. [Google Scholar] [CrossRef]
- Schnittert, J.; Bansal, R.; Storm, G.; Prakash, J. Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Adv. Drug Deliv. Rev. 2018, 129, 37–53. [Google Scholar] [CrossRef]
- Zeltz, C.; Gullberg, D. The integrin–collagen connection—A glue for tissue repair? J. Cell. Sci. 2016, 129, 653–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, S. Importance of integrin receptors in the field of pharmaceutical and medical science. Adv. Biol. Chem. 2013, 3, 224–252. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuis, B.; Haenzi, B.; Andrews, M.R.; Verhaagen, J.; Fawcett, J.W. Integrins promote axonal regeneration after injury of the nervous system. Biol. Rev. 2018, 93, 1339–1362. [Google Scholar] [CrossRef]
- Bednarczyk, M.; Stege, H.; Grabbe, S.; Bros, M. β2 Integrins—Multi-Functional Leukocyte Receptors in Health and Disease. Int. J. Mol. Sci. 2020, 21, 1402. [Google Scholar] [CrossRef] [Green Version]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Zhao, Y.; Yuan, Z.; Qin, G. Research advances on structure and biological functions of integrins. SpringerPlus 2016, 5, 1094. [Google Scholar] [CrossRef] [Green Version]
- Yongabi, D.; Khorshid, M.; Gennaro, A.; Jooken, S.; Duwé, S.; Deschaume, O.; Losada-Pérez, P.; Dedecker, P.; Bartic, C.; Wübbenhorst, M.; et al. QCM-D Study of Time-Resolved Cell Adhesion and Detachment: Effect of Surface Free Energy on Eukaryotes and Prokaryotes. ACS Appl. Mater. Interfaces 2020, 12, 18258–18272. [Google Scholar] [CrossRef]
- Nascimento, R.M.; Sarig, U.; da Cruz, N.C.; de Carvalho, V.R.; Eyssartier, C.; Siad, L.; Ganghoffer, J.F.; Hernandes, A.C.; Rahouadj, R. Optimized-Surface Wettability: A New Experimental 3DModeling Approach Predicting Favorable Biomaterial-Cell Interac-tions. Adv. Theory Simul. 2019, 2, 1900079. [Google Scholar] [CrossRef]
- Harnett, E.M.; Alderman, J.; Wood, T. The Surface Energy of Various Biomaterials Coated with Adhesion Molecules Used in Cell Culture. Colloids Surf. B 2007, 55, 90–97. [Google Scholar] [CrossRef]
- Gentleman, M.M.; Gentleman, E. The Role of Surface Free Energy in Osteoblast-Biomaterial Interactions. Int. Mater. Rev. 2014, 59, 417–429. [Google Scholar] [CrossRef]
- Pedram Rad, Z.; Mokhtari, J.; Abbasi, M. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Int. J. Biol. Macromol. 2019, 135, 530–543. [Google Scholar] [CrossRef]
- Kolesińska, B.; Frączyk, J.; Papini, A.M.; Kamiński, Z.J. Sulfonates of N-triazinylammonium salts as highly efficient, inexpensive and environmentally friendly coupling reagents for peptide synthesis in solution. Chem. Today 2007, 25, 26–29. [Google Scholar]
- Rmaidi, A.; Zelzer, M.; Sindji, L.; Dima, R.; Boury, F.; Delorme, N.; Montero-Menei, C.N. Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111852. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Tian, L.; Shamirzaei-Jeshvaghani, E.; Dehghani, L.; Ramakrishna, S. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J. Stem Cells 2015, 7, 728–744. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Silva, E.A.; Reseland, J.E.; Heyward, C.A.; Haugen, H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020, 49, 5178–5224. [Google Scholar] [CrossRef]
- Carré, A.; Lacarrière, V. How Substrate Properties Control Cell Adhesion. A Physical–Chemical Approach. J. Adhes. Sci. Technol. 2010, 24, 815–830. [Google Scholar] [CrossRef]
- Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Chen, J.Y. Activated Carbon Fibers and Textiles. In Woodhead Publishing Series in Textiles; Chen, J.Y., Ed.; Woodhead Publishing, Elsevier: Cambridge, UK, 2017; pp. 3–20. [Google Scholar]
- Fraczyk, J.; Wasko, J.; Walczak, M.; Kaminski, Z.J.; Puchowicz, D.; Kaminska, I.; Bogun, M.; Kolasa, M.; Stodolak-Zych, E.; Scislowska-Czarnecka, A.; et al. Conjugates of Copper Alginate with Arginine-Glycine-Aspartic Acid (RGD) for Potential Use in Regenerative Medicine. Materials 2020, 13, 337. [Google Scholar] [CrossRef] [Green Version]
- Wasko, J.; Fraczyk, J.; Becht, A.; Kaminski, Z.J.; Flincec Grgac, S.; Tarbuk, A.; Kaminska, M.; Dudek, M.; Gliscinska, E.; Draczynski, Z.; et al. Conjugates of Chitosan and Calcium Alginate with Oligoproline and Oligohydroxyproline Derivatives for Potential Use in Regenerative Medicine. Materials 2020, 13, 3079. [Google Scholar] [CrossRef]
- Fraczyk, J.; Walczak, M.; Szymanski, L.; Kolacinski, Z.; Wrzosek, H.; Majsterek, I.; Przybylowska-Sygut, K.; Kaminski, Z.J. Carbon nanotubes functionalized with folic acid attached via biomimetic peptide linker. Nanomedicine 2017, 12, 2161–2182. [Google Scholar] [CrossRef]
- Kolesinska, B.; Rozniakowski, K.K.; Fraczyk, J.; Relich, I.; Papini, A.M.; Kamiński, Z.J. The Effect of Counterion and Tertiary Amine on the Efficiency of N-Triazinylammonium Sulfonates in Solution and Solid-Phase Peptide Synthesis. Eur. J. Org. Chem. 2015, 2015, 401–408. [Google Scholar] [CrossRef]
PAN | oxyPAN | CF | |
---|---|---|---|
Fiber diameter ± SD, µm | 14.3 ± 1.0 | 9.7 ± 0.4 | 9.2 ± 0.2 |
Nonwoven retention, % | 85.4 ± 3.0 | 75.9 ± 3.0 | 64.6 ± 3.0 |
Nonwoven porosity, % | 87.8 ± 3.0 | 92.8 ± 3.0 | 95.6 ± 3.1 |
Nonwoven wettability | 56.4 ± 3.1 | 66.7 ± 2.7 | 86.9 ± 3.4 |
Sample | Water CA, θ (deg) | Diiodomethane CA, θ (deg) | Surface Free Energy, SFE (mN/m) | Polar Component SFE, ɣp (mN/m) | Dispersive Component SFE, ɣd (mN/m) |
---|---|---|---|---|---|
CF | 86.9 ± 2.8 | 43.3 ± 2.9 | 34.5 ± 2.4 | 12.9 ± 0.9 | 21.6 ± 1.5 |
CF-1c | 68.4 ± 4.5 | 62.3 ± 4.4 | 30.8 ± 3.1 | 22.6 ± 2.5 | 8.2 ± 0.6 |
CF-3 | 66.9 ± 4.2 | 64.1 ± 4.5 | 31.1 ± 3.5 | 24.1 ± 1.6 | 7.0 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frączyk, J.; Magdziarz, S.; Stodolak-Zych, E.; Dzierzkowska, E.; Puchowicz, D.; Kamińska, I.; Giełdowska, M.; Boguń, M. Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens. Materials 2021, 14, 3198. https://doi.org/10.3390/ma14123198
Frączyk J, Magdziarz S, Stodolak-Zych E, Dzierzkowska E, Puchowicz D, Kamińska I, Giełdowska M, Boguń M. Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens. Materials. 2021; 14(12):3198. https://doi.org/10.3390/ma14123198
Chicago/Turabian StyleFrączyk, Justyna, Sylwia Magdziarz, Ewa Stodolak-Zych, Ewa Dzierzkowska, Dorota Puchowicz, Irena Kamińska, Małgorzata Giełdowska, and Maciej Boguń. 2021. "Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens" Materials 14, no. 12: 3198. https://doi.org/10.3390/ma14123198
APA StyleFrączyk, J., Magdziarz, S., Stodolak-Zych, E., Dzierzkowska, E., Puchowicz, D., Kamińska, I., Giełdowska, M., & Boguń, M. (2021). Chemical Modification as a Method of Improving Biocompatibility of Carbon Nonwovens. Materials, 14(12), 3198. https://doi.org/10.3390/ma14123198