The Influence of Popular Beverages on Mechanical Properties of Composite Resins
Abstract
1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Vickers Microhardness Test
2.3. Flexural Strength Test
2.4. Statistical Methods
- Composite material;
- Conditioning environment;
- Interaction of both factors.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jongsma, L.A.; Kleverlaan, C.J.; Feilzer, A.J. Clinical Success and Survival of Indirect Resin Composite Crowns: Results of a 3-Year Prospective Study. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2012, 28, 952–960. [Google Scholar] [CrossRef]
- Kassem, A.S.; Atta, O.; El-Mowafy, O. Fatigue Resistance and Microleakage of CAD/CAM Ceramic and Composite Molar Crowns. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2012, 21, 28–32. [Google Scholar] [CrossRef]
- Shaw, L.; Smith, A.J. Dental Erosion—The Problem and Some Practical Solutions. Br. Dent. J. 1999, 186, 115–118. [Google Scholar]
- Armstrong, L.E.; Johnson, E.C. Water Intake, Water Balance, and the Elusive Daily Water Requirement. Nutrients 2018, 10, 1928. [Google Scholar] [CrossRef]
- Yip, H.H.Y.; Wong, R.W.K.; Hägg, U. Complications of Orthodontic Treatment: Are Soft Drinks a Risk Factor? World J. Orthod. 2009, 10, 33–40. [Google Scholar]
- Lee, J.G.; Messer, L.B. Intake of Sweet Drinks and Sweet Treats versus Reported and Observed Caries Experience. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2010, 11, 5–17. [Google Scholar] [CrossRef]
- Hannig, C.; Hamkens, A.; Becker, K.; Attin, R.; Attin, T. Erosive Effects of Different Acids on Bovine Enamel: Release of Calcium and Phosphate in Vitro. Arch. Oral Biol. 2005, 50, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.S.; Kato, M.T.; Buzalaf, M.A.R. Effect of Supplementation of Soft Drinks with Green Tea Extract on Their Erosive Potential against Dentine. Aust. Dent. J. 2011, 56, 317–321. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; Duggal, M.S.; Malik-Kotru, G.; Curzon, M.E.J. Soft Drinks and Dental Health: A Review of the Current Literature. J. Dent. 2006, 34, 2–11. [Google Scholar] [CrossRef]
- Polski Komitet Normalizacyjny. Stomatologia—Materiały Polimerowe do Odbudowy PN-EN ISO 4049; Polski Komitet Normalizacyjny: Warszawa, Poland, 2010; ISBN 978-83-266-2107-9. [Google Scholar]
- Gawriołek, M.; Sikorska, E.; Ferreira, L.F.V.; Costa, A.I.; Khmelinskii, I.; Krawczyk, A.; Sikorski, M.; Koczorowski, R. Color and Luminescence Stability of Selected Dental Materials In Vitro: Color and Luminescence Stability. J. Prosthodont. 2012, 21, 112–122. [Google Scholar] [CrossRef]
- Fastier-Wooller, J.; Phan, H.-P.; Dinh, T.; Nguyen, T.-K.; Cameron, A.; Öchsner, A.; Dao, D.V. Novel Low-Cost Sensor for Human Bite Force Measurement. Sensors 2016, 16, 1244. [Google Scholar] [CrossRef] [PubMed]
- Waltimo, A.; Kemppainen, P.; Könönen, M. Maximal Contraction Force and Endurance of Human Jaw-Closing Muscles in Isometric Clenching. Scand. J. Dent. Res. 1993, 101, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Yanikoğlu, N.; Duymuş, Z.Y.; Yilmaz, B. Effects of Different Solutions on the Surface Hardness of Composite Resin Materials. Dent. Mater. J. 2009, 28, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Chung, S.H.; Lee, J.T.; Kim, Y.T.; Kim, Y.J.; Oh, S.; Yeo, I.L. Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials 2018, 18, 1234. [Google Scholar] [CrossRef]
- Tanthanuch, S.; Kukiattrakoon, B.; Siriporananon, C.; Ornprasert, N.; Mettasitthikorn, W.; Likhitpreeda, S.; Waewsanga, S. The effect of different beverages on surface hardness of nanohybrid resin composite and giomer. J. Conserv. Dent. 2014, 17, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Aliping-McKenzie, M.; Linden, R.W.A.; Nicholson, J.W. The Effect of Coca-Cola and Fruit Juices on the Surface Hardness of Glass-Ionomers and “Compomers”. J. Oral Rehabil. 2004, 31, 1046–1052. [Google Scholar] [CrossRef]
- Da Silva, M.A.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Silva-Júnior, J.G.; Tonholo, J. Effect of alcoholic beverages on surface roughness and microhardness of dental composites. Dent. Mater. J. 2016, 621–626. [Google Scholar] [CrossRef]
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers Micro-Hardness of New Restorative CAD/CAM Dental Materials: Evaluation and Comparison after Exposure to Acidic Drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef]
- Awliya, W.Y.; Al-Alwani, D.J.; Gashmer, E.S.; Al-Mandil, H.B. The Effect of Commonly Used Types of Coffee on Surface Microhardness and Color Stability of Resin-Based Composite Restorations. Saudi. Dent. J. 2010, 22, 177–181. [Google Scholar] [CrossRef]
- Higgins, J.P.; Babu, K.M. Caffeine reduces myocardial blood flow during exercise. Am. J. Med. 2013, 126, e1–e8. [Google Scholar] [CrossRef]
- Nowak, D.; Jasionowski, A. Analysis of the Consumption of Caffeinated Energy Drinks among Polish Adolescents. Int. J. Environ. Res. Public Health 2015, 10, 7910–7921. [Google Scholar] [CrossRef]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface Hardness of Different Restorative Materials after Long-Term Immersion in Sports and Energy Drinks. Dent. Mater. J. 2012, 31, 729–736. [Google Scholar] [CrossRef]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface Hardness Evaluation of Different Composite Resin Materials: Influence of Sports and Energy Drinks Immersion after a Short-Term Period. J. Appl. Oral Sci. Rev. FOB 2013, 21, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, U.; Yildiz, E.; Eren, M.M. Effects of Sports Drinks on Color Stability of Nanofilled and Microhybrid Composites after Long-Term Immersion. J. Dent. 2012, 40 (Suppl. 2), e55–e63. [Google Scholar] [CrossRef]
- Janda, R.; Roulet, J.-F.; Latta, M. The Effects of Thermocycling on the Flexural Strength and Flexural Modulus of Modern Resin-Based Filling Materials. Dent. Mater. 2006, 22, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Egli, R.; Roos, M.; Özcan, M.; Hämmerle, C.H. The Impact of in Vitro Aging on the Mechanical and Optical Properties of Indirect Veneering Composite Resins. J. Prosthet. Dent. 2011, 106, 386–398. [Google Scholar] [CrossRef]
- Schmidt, C.; Ilie, N. The Mechanical Stability of Nano-Hybrid Composites with New Methacrylate Monomers for Matrix Compositions. Dent. Mater. 2012, 28, 152–159. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.D.S.; Gerhardt, K.M.D.F.; Pereira, G.D.D.S.; Sinhoreti, M.A.C.; Schneider, L.F.J. Do New Matrix Formulations Improve Resin Composite Resistance to Degradation Processes? Braz. Oral Res. 2013, 27, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Yesilyurt, C.; Yoldas, O.; Altintas, S.H.; Kusgoz, A. Effects of Food-Simulating Liquids on the Mechanical Properties of a Silorane-Based Dental Composite. Dent. Mater. J. 2009, 28, 362–367. [Google Scholar] [CrossRef]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Scarantino, S.; Dagna, A.; Poggio, C.; Colombo, M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics 2020, 28, 56. [Google Scholar] [CrossRef]
- Jyothi, K.; Crasta, S.; Venugopal, P. Effect of Five Commercial Mouth Rinses on the Microhardness of a Nanofilled Resin Composite Restorative Material: An in Vitro Study. J. Conserv. Dent. JCD 2012, 15, 214–217. [Google Scholar] [CrossRef]
- Vouvoudi, E.C.; Sideridou, I.D. Dynamic Mechanical Properties of Dental Nanofilled Light-Cured Resin Composites: Effect of Food-Simulating Liquids. J. Mech. Behav. Biomed. Mater. 2012, 10, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Correr, G.M.; Bruschi Alonso, R.C.; Baratto-Filho, F.; Correr-Sobrinho, L.; Sinhoreti, M.A.C.; Puppin-Rontani, R.M. In Vitro Long-Term Degradation of Aesthetic Restorative Materials in Food-Simulating Media. Acta Odontol. Scand. 2012, 70, 101–108. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Mohamad, D.; Md Akil, H.; Ab Rahman, I. Water Sorption Characteristics of Restorative Dental Composites Immersed in Acidic Drinks. Dent. Mater. 2012, 28, e63–e70. [Google Scholar] [CrossRef]
Name | Company | Filler Type | Filler Size | % of Total Weight |
---|---|---|---|---|
Gradia Direct Anterior | GC E, Belgium | Micro-hybrid | Silica—0.85 µm | 73% |
G-aenial | GC EUROPE, Belgium | Nano-hybrid | Silica/strontium glass, lanthanum fluoride 16–17 µm, silica > 100 nm, colloidal silica < 100 nm | 89% |
Kalore | GC EUROPE, Belgium | Nano-hybrid | Prepolymerized filler 17 µm strontium glass, lanthanum fluoride > 100 nm, colloidal silica < 100 nm | 82% |
Boston | Arkona, Poland | Micro-hybrid | Barium–aluminium–silicon glass, fumed silica, titanium dioxide 0.72 µm | 78% |
F2 | Arkona, Poland | Micro-hybrid | Fluorine–barium–aluminium–silica glass exerting fluorine, fumed silica, titanium dioxide 0.90 µm | 79% |
GrandioSO | VOCO GmbH, Germany | Nano-hybrid | Nanoparticles 20–40 nm, glass–porcelain material 0.05 μm | 89% |
Polofil Supra | VOCO GmbH, Germany | Micro-hybrid | Sintraglass system (microfiller 0.05 μm macrofiller 0.5–2 μm) | 76.50% |
Arabesk | VOCO GmbH, Germany | Micro-hybrid | Sintraglass system (microfiller 0.05 μm macrofiller 0.5–2 μm) | 76.50% |
Distilled Water (Control Group) | Sparkling Water | Red Bull | Coca Cola | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|
pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) |
5.83 | 21.7 | 5.41 | 22.2 | 3.41 | 22.3 | 2.42 | 21.3 | 3.86 | 21.4 |
5.82 | 21.9 | 5.45 | 22.2 | 3.42 | 22.5 | 2.42 | 21.3 | 3.87 | 21.5 |
5.83 | 22 | 5.45 | 22.4 | 3.41 | 22.3 | 2.42 | 21.7 | 3.86 | 21.5 |
Composite Material | Distilled Water (Control Group) | Sparkling Water | Coca-Cola | Red Bull | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
Gradia Direct Anterior | 26.60 | 0.55 | 21.54 * | 0.26 | 17.09 * | 0.25 | 16.17 * | 0.22 | 16.37 * | 0.27 |
G-aenial | 30.25 | 0.39 | 24.22 * | 0.20 | 22.03 * | 0.25 | 22.64 * | 0.23 | 20.88 * | 0.20 |
Kalore | 37.80 | 0.60 | 33.27 * | 0.52 | 28.18 * | 0.28 | 32.48 * | 0.34 | 23.95 * | 0.26 |
Boston | 45.11 | 0.52 | 39.85 * | 0.41 | 29.77 * | 0.34 | 36.34 * | 0.45 | 36.33 * | 0.37 |
F2 | 46.22 | 0.37 | 45.35 | 0.45 | 39.26 * | 0.40 | 39.18 * | 0.32 | 38.28 * | 0.40 |
Polofil Supra | 45.99 | 0.49 | 39.69 * | 0.37 | 37.68 * | 0.33 | 39.07 * | 0.34 | 36.70 * | 0.34 |
GrandioSO | 61.73 | 0.69 | 54.53 * | 0.58 | 51.92 * | 0.62 | 56.58 * | 0.54 | 47.33 * | 0.43 |
Arabesk | 39.99 | 0.39 | 36.79 * | 0.36 | 36.07 * | 0.34 | 37.30 * | 0.33 | 35.45 * | 0.32 |
Composite Material | Distilled Water (Control Group) | Sparkling Water | Coca-Cola | Red Bull | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Gradia Direct Anterior | 89.35 | 7.91 | 87.69 | 12.2 | 76.51 * | 7.21 | 83.48 | 5.36 | 77.64 * | 8.39 |
G-aenial | 98.44 | 6.42 | 94.70 | 6.57 | 89.24 | 10.96 | 98.40 | 10.71 | 94.55 | 10.93 |
Kalore | 95.71 | 19.7 | 94.26 | 14.8 | 88.47 | 8.76 | 90.00 | 12.63 | 93.27 | 11.91 |
Boston | 127.95 | 16.51 | 128.30 | 11.98 | 117.32 | 22.29 | 127.58 | 17.98 | 127.61 | 23.67 |
F2 | 131.23 | 28.04 | 130.20 | 20.45 | 122.71 | 26.04 | 117.05 | 19.08 | 122.60 | 13.38 |
Polofil Supra | 139.90 | 19.38 | 128.47 | 22.14 | 113.52 | 27.67 | 134.10 | 22.72 | 124.65 | 29.84 |
GrandioSO | 136.58 | 34.65 | 133.66 | 29.15 | 126.60 | 27.82 | 131.17 | 27.87 | 133.31 | 31.34 |
Arabesk | 132.06 | 19.59 | 117.74 | 22.49 | 105.96 | 28.18 | 117.75 | 27.78 | 110.95 | 25.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalewski, L.; Wójcik, D.; Bogucki, M.; Szkutnik, J.; Różyło-Kalinowska, I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials 2021, 14, 3097. https://doi.org/10.3390/ma14113097
Szalewski L, Wójcik D, Bogucki M, Szkutnik J, Różyło-Kalinowska I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials. 2021; 14(11):3097. https://doi.org/10.3390/ma14113097
Chicago/Turabian StyleSzalewski, Leszek, Dorota Wójcik, Marcin Bogucki, Jacek Szkutnik, and Ingrid Różyło-Kalinowska. 2021. "The Influence of Popular Beverages on Mechanical Properties of Composite Resins" Materials 14, no. 11: 3097. https://doi.org/10.3390/ma14113097
APA StyleSzalewski, L., Wójcik, D., Bogucki, M., Szkutnik, J., & Różyło-Kalinowska, I. (2021). The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials, 14(11), 3097. https://doi.org/10.3390/ma14113097