Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
b | dimensionless parameter | (-) |
B | mgnetic field | (T) |
C | capacitance | (pF) |
d | diameter of nanoparticle | (nm) |
D | cell gap | (μm) |
dimensionless threshold field | (-) | |
splay elastic constant | (pN) | |
unit vector of the magnetization | ||
saturation magnetization | (A/m) | |
director | ||
U | voltage | (V) |
W | anchoring energy | (N/m) |
vacuum permeability | (H/m) | |
dimensionless energy | (-) | |
volume concentration | (-) | |
magnetic susceptibility anisotropy | (-) | |
Subscripts | ||
c | threshold value for measurements in combined | |
electric and magnetic field | ||
F | threshold value for measurements in electric and | |
magnetic field separately | ||
FN | ferronematic | |
LC | liquid crystal | |
max | maximum value | |
min | minimum value | |
Abbreviations | ||
6CB | 4-cyano-4-hexylbiphenyl | |
SQUID | superconducting quantum interference device |
References
- Fréedericksz, V.; Zolina, V. Forces causing the orientation of an anisotropic liquid. Trans. Faraday Soc. 1933, 29, 919–930. [Google Scholar] [CrossRef]
- Podoliak, N.; Buchnev, O.; Bavykin, D.V.; Kulak, A.N.; Kaczmarek, M.; Sluckin, T.J. Magnetite nanorod thermotropic liquid crystal colloids: Synthesis, optics and theory. J. Colloid Interface Sci. 2012, 386, 158–166. [Google Scholar] [CrossRef]
- Tomašovičová, N.; Burylov, S.; Gdovinová, V.; Tarasov, A.; Kováč, J.; Burylova, N.; Voroshilov, A.; Kopčanský, P.; Jadżyn, J. Magnetic Freedericksz transition in a ferronematic liquid crystal doped with spindle magnetic particles. J. Mol. Liq. 2018, 267, 390–397. [Google Scholar] [CrossRef]
- Kopčanský, P.; Gdovinová, V.; Burylov, S.; Burylova, N.; Voroshilov, A.; Majorošová, J.; Agresti, F.; Zin, V.; Barison, S.; Jadżyn, J.; et al. The influence of goethite nanorods on structural transitions in liquid crystal 6CHBT. J. Magn. Magn. Mater. 2018, 459, 26–32. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C.; Stan, C. Dynamic behavior of a nematic liquid crystal mixed with CoFe2O4 ferromagnetic nanoparticles in a magnetic field. Beilstein J. Nanotechnol. 2017, 8, 2467–2473. [Google Scholar] [CrossRef]
- Chemingui, M.; Singh, U.B.; Yadav, N.; Dabrowski, S.; Dhar, R. Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material. J. Mol. Liq. 2020, 319, 114299. [Google Scholar] [CrossRef]
- Jessy, P.J.; Bambole, V.; Deshmukh, R.R.; Patel, N. Reduced power consumption in nickel zinc ferrite nanoparticles doped blue phase chiral nematic liquid crystal devices. J. Mol. Liq. 2019, 281, 480–489. [Google Scholar] [CrossRef]
- Pandey, F.P.; Rastogi, A.; Manohar, R.; Dhar, R.; Singh, S. Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4′-Heptyl-4-biphenylcarbonnitrile. Liq. Cryst. 2019, 47, 1025–1040. [Google Scholar] [CrossRef]
- Khushboo; Sharma, P.; Malik, P.; Raina, K.K. Dielectric and electro-optical studies of a nickel-ferrite-nanoparticledoped ferroelectric liquid crystal mixture. Phase Transit. 2015, 89, 144–154. [Google Scholar]
- Yadav, G.; Pathak, G.; Agrahari, K.; Kumar, M.; Khan, M.S.; Chandel, V.S.; Manohar, R. Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles. Chin. Phys. B 2019, 28, 034209. [Google Scholar] [CrossRef]
- Ayeb, H.; Derbali, M.; Mouhli, A.; Soltani, T. Viscoelastic and dielectric properties of 5CB nematic liquid crystal doped by magnetic and nonmagnetic nanoparticles. Phys. Rev. E 2020, 102, 052703. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Majles, M.H.; Saboohi, F. Dielectric properties of nematic liquid crystal doped with Fe3O4 nanoparticles. Phase Transit. 2016, 90, 371–379. [Google Scholar] [CrossRef]
- Yadav, G.; Roy, A.; Agrahari, K.; Katiyar, R.; Chandel, V.S.; Manohar, R. Influence of Fe2O3 nanoparticles on the birefringence property of weakly polar nematic liquid crystal. Mol. Cryst. Liq. Cryst. 2019, 680, 65–74. [Google Scholar] [CrossRef]
- Koo, W.S.; Chung, H.K.; Park, H.G.; Han, J.J.; Jeong, H.C.; Cho, M.J.; Kim, D.H.; Seo, D.S. Enhanced Switching Behavior of Iron Oxide Nanoparticle-Doped Liquid-Crystal Display. J. Nanosci. Nanotechnol. 2014, 14, 8609–8614. [Google Scholar] [CrossRef] [PubMed]
- Brochard, F.; de Gennes, P.G. Theory of magnetic suspensions in liquid crystals. J. Phys. 1970, 31, 691–708. [Google Scholar] [CrossRef]
- Popov, V.A.; Gilev, V.G.; Zakhlevnykh, A.N. Weak Coupling Effect on the Magnetic Freedericksz Transition in a Ferronematic Liquid Crystal. Phys. Solid State 2018, 60, 1462–1467. [Google Scholar] [CrossRef]
- Kopčanský, P.; Tomašovičová, N.; Timko, M.; Závišová, V.; Tomčo, L.; Jadżyn, J. The Sensitivity of Ferronematics to External Magnetic Fields. J. Phys. Conf. Ser. 2010, 200, 072055. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. Magnetic Fredericksz Transition in a Ferronematic. J. Magn. Magn. Mater. 1993, 122, 62–65. [Google Scholar] [CrossRef]
- Burylov, S.V.; Zakhlevnykh, A.N. Analytical description of 2D magnetic Freedericksz transition in a rectangular cell of a nematic liquid crystal. Eur. Phys. J. E 2016, 39, 65. [Google Scholar] [CrossRef]
- Makarov, D.V.; Zakhlevnykh, A.N. Tricritical phenomena at the Fréedericksz transition in ferronematic liquid crystals. Phys. Rev. E 2010, 81, 051710. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Magnetic field induced orientational transitions in soft compensated ferronematics. Phase Transit. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Orientational Transitions in Antiferromagnetic Liquid Crystals. Phys. Solid State 2016, 58, 1906–1915. [Google Scholar] [CrossRef]
- Zakutanská, K.; Lacková, V.; Tomašovičová, N.; Burylov, S.; Burylova, N.; Skosar, V.; Juríková, A.; Vojtko, M.; Jadżyn, J.; Kopčanský, P. Nanoparticle’s size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal. J. Mol. Liq. 2019, 289, 111125. [Google Scholar] [CrossRef]
- Studenyak, I.P.; Kovalchuk, O.V.; Pogodin, A.I.; Poberezhets, S.I.; Studenyak, V.I.; Poberezhets, I.I.; Lackova, V.; Kopčanský, P.; Timko, M. Influence of cation substitution on dielectric properties and electric conductivity of 6CB liquid crystal with Me7GeS5I (me = Ag, Cu) superionic nanoparticles. Mol. Cryst. Liq. Cryst. 2020, 702, 21–29. [Google Scholar] [CrossRef]
- Burylov, S.V.; Raikher, Y.L. Molecular properties of ferronematic caused by orientational interactions on the particle surface. II. Behavior of real ferronematics in external fields. Mol. Cryst. Liq. Cryst. 1995, 258, 123–141. [Google Scholar] [CrossRef]
- Bradshaw, M.J.; Raynes, E.P.; Bunning, J.D.; Faber, T.E. The Frank constants of some nematic liquid crystals. J. Phys. 1985, 46, 1513–1520. [Google Scholar] [CrossRef]
- Zakhlevnykh, A.N.; Petrov, D.A. Weak coupling effects and re-entrant transitions in ferronematic liquid crystals. J. Mol. Liq. 2014, 198, 223–233. [Google Scholar] [CrossRef]
- Tomašovičová, N.; Kopčanský, P.; Éber, N. Anisotropy Research: New Developments; Nova Science: Hauppauge, NY, USA, 2012; Chapter 11; pp. 245–276. [Google Scholar]
(V) | (T) | |||||
---|---|---|---|---|---|---|
10 nm | 20 nm | 30 nm | 10 nm | 20 nm | 30 nm | |
0.79 | 0.79 | 0.79 | 0.16 | 0.16 | 0.15 | |
0.78 | 0.78 | 0.76 | 0.15 | 0.15 | 0.14 | |
0.63 | 0.26 | 0.54 | 0.12 | 0.05 | 0.09 |
d (nm) | (T) | b | ||||
---|---|---|---|---|---|---|
0.16 | 3.14 | 126 | 0.022 | 3.88 | ||
10 nm | 0.15 | 2.94 | 629 | 0.60 | 4.53 | |
0.12 | 2.36 | 1258 | 2.16 | 4.67 | ||
0.16 | 3.14 | 408 | 0.022 | 4.40 | ||
20 nm | 0.15 | 2.94 | 2040 | 0.60 | 4.74 | |
0.05 | 0.98 | 4080 | 4.44 | 4.81 | ||
0.15 | 2.94 | 472 | 0.60 | 4.45 | ||
30 nm | 0.14 | 2.75 | 2362 | 1.16 | 4.76 | |
0.09 | 1.77 | 4725 | 3.37 | 4.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakutanská, K.; Petrov, D.; Kopčanský, P.; Węgłowska, D.; Tomašovičová, N. Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials 2021, 14, 3096. https://doi.org/10.3390/ma14113096
Zakutanská K, Petrov D, Kopčanský P, Węgłowska D, Tomašovičová N. Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials. 2021; 14(11):3096. https://doi.org/10.3390/ma14113096
Chicago/Turabian StyleZakutanská, Katarína, Danil Petrov, Peter Kopčanský, Dorota Węgłowska, and Natália Tomašovičová. 2021. "Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration" Materials 14, no. 11: 3096. https://doi.org/10.3390/ma14113096
APA StyleZakutanská, K., Petrov, D., Kopčanský, P., Węgłowska, D., & Tomašovičová, N. (2021). Fréedericksz Transitions in 6CB Based Ferronematics—Effect of Magnetic Nanoparticles Size and Concentration. Materials, 14(11), 3096. https://doi.org/10.3390/ma14113096