Magnetization of Ultraviolet-Reduced Graphene Oxide Flakes in Composites Based on Polystyrene
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yazyev, O.V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 2010, 73, 056501. [Google Scholar] [CrossRef]
- Li, X.; Wu, X. Two-dimensional monolayer designs for spintronics applications. WIREs Comput. Mol. Sci. 2016, 6, 441–455. [Google Scholar] [CrossRef]
- Esquinazi, P.; Spemann, D.; Höhne, R.; Setzer, A.; Han, K.-H.; Butz, T. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 2003, 91, 227201. [Google Scholar] [CrossRef]
- Esquinazi, P.; Hergert, W.; Spemann, D.; Setzer, A.; Ernst, A. Defect-induced magnetism in solids. IEEE Trans. Magn. 2013, 49, 4668–4674. [Google Scholar] [CrossRef]
- Xia, H.; Li, W.; Song, Y.; Yang, X.; Liu, X.; Zhao, M.; Xia, Y.; Song, C.; Wang, T.-W.; Zhu, D.; et al. Tunable magnetism in carbon-ion-implanted highly oriented pyrolytic graphite. Adv. Mater. 2008, 20, 4679–4683. [Google Scholar] [CrossRef]
- Ramos, M.A.; Barzola-Quiquia, J.; Esquinazi, P.; Muñoz-Martin, A.; Climent-Font, A.; García-Hernández, M. Magnetic properties of graphite irradiated with MeV ions. Phys. Rev. B 2010, 81, 214404. [Google Scholar] [CrossRef]
- Mishra, S.N.; Mohanta, S.K.; Davane, S.M.; Srivastava, S.K. Defect induced magnetic interactions in highly oriented pyrolytic graphite (HOPG): A local investigation using TDPAD method. Hyperfine Interact. 2010, 197, 71–75. [Google Scholar] [CrossRef]
- Mohanta, S.K.; Mishra, S.N.; Davane, S.M.; Srivastava, S.K. Defect induced magnetism in highly oriented pyrolytic graphite: Bulk magnetization and 19F hyperfine interaction studies. J. Phys. Condens. Matter. 2012, 24, 085601. [Google Scholar] [CrossRef]
- Kopelevich, Y.; Esquinazi, P.; Torres, J.H.S.; Moehlecke, S. Ferromagnetic- and superconducting-like behavior of graphite. J. Low Temp. Phys. 2000, 119, 691–702. [Google Scholar] [CrossRef]
- Wang, Y.; Pochet, P.; Jenkins, C.A.; Arenholz, E.; Bukalis, G.; Gemming, S.; Helm, M.; Zhou, S. Defect-induced magnetism in graphite through neutron irradiation. Phys. Rev. B 2014, 90, 214435. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y.T.; Helm, M.; Zhou, S.; Kühne, H. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR. J. Phys. Condens. Matter 2017, 29, 465801. [Google Scholar] [CrossRef]
- Nair, R.R.; Sepioni, M.; Tsai, I.-L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.V.; Thomson, T.; Geim, A.K.; Grigorieva, I.V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202. [Google Scholar] [CrossRef]
- Diamantopoulou, Α.; Glenis, S.; Zolnierkiwicz, G.; Guskos, N.; Likodimos, V. Magnetism in pristine and chemically reduced graphene oxide. J. Appl. Phys. 2017, 121, 043906. [Google Scholar] [CrossRef]
- Ionov, A.N.; Volkov, M.P.; Nikolaeva, M.N.; Smyslov, R.Y.; Bugrov, A.N. The magnetization of a composite based on reduced graphene oxide and polystyrene. Nanomaterials 2021, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Runov, V.V.; Bugrov, A.N.; Smyslov, R.Y.; Kopitsa, G.P.; Ivan’kova, E.M.; Pavlova, A.A.; Feoktistov, A. Magnetic neutron scattering in reduced graphene oxide. JETP Lett. 2021, 113, 384–388. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Weng, W.; Yan, W. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J. Appl. Polym. Sci. 2001, 82, 2506–2513. [Google Scholar] [CrossRef]
- Gao, W.; Ma, Y.; Zhang, Y.; Chen, Q.; Chen, H.; Zhu, B.; Jia, J.; Huang, A.; Xie, K.; Bai, Y. Architecture & functionalization evolution of RGO affect physicomechanical properties of polyolefin/RGO composites. Compos. Part A 2018, 107, 479–488. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Cheng, L.; Li, J.; Li, Y.; Liu, H. Preparation and characterization of graphene oxide/PMMA nanocomposites with aminoterminated vinyl polydimethylsiloxane phase interfaces. J. Polym. Eng. 2016, 36, 867–875. [Google Scholar] [CrossRef]
- Leaper, S.; Abdel-Karim, A.; Faki, B.; Luque-Alled, J.M.; Alberto, M.; Vijayaraghavan, A.; Holmes, S.M.; Szekely, G.; Badawy, M.I.; Shokri, N.; et al. Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J. Membr. Sci. 2018, 554, 309–323. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Shnitov, V.V.; Dideikin, A.T.; Aleksenskii, A.E.; Vul’, S.P.; Baidakova, M.V.; Pronin, I.I.; Kirilenko, D.A.; Brunkov, P.N.; Weise, J.; et al. Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere. J. Phys. Chem. C 2016, 120, 28261–28269. [Google Scholar] [CrossRef]
- Nikolaeva, M.N.; Bugrov, A.N.; Anan’eva, T.D.; Dideikin, A.T.; Rabchinskii, M.K.; Ionov, A.N. Resistance of UV-perforated reduced graphene oxide on polystyrene surface. Nanosyst. Phys. Chem. Math. 2018, 9, 793–797. [Google Scholar] [CrossRef]
- Dideykin, A.; Aleksenskiy, A.E.; Kirilenko, D.; Brunkov, P.; Goncharov, V.; Baidakova, M.; Sakseev, D.; Vul, A.Y. Monolayer graphene from graphite oxide. Diam. Relat. Mater. 2011, 20, 105–108. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Guo, L.; Xia, H.; Chen, Q.-D.; Feng, J.; Sun, H.-B. Photoreduction of graphene oxides: Methods, properties, and applications. Adv. Opt. Mater. 2014, 2, 10–28. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Shnitov, V.V.; Stolyarova, D.Y.; Ryzhkov, S.A.; Baidakova, M.V.; Lobanova, E.Y.; Shvidchenko, A.V.; Besedina, N.A.; Smirnov, D.A. Graphene oxide conversion into controllably carboxylated graphene layers via photoreduction process in the inert atmosphere. Fuller. Nanotub. Carbon Nanostruct. 2019, 28, 221–225. [Google Scholar] [CrossRef]
- MarvinSketch, Version 21.3.0, ChemAxon. Available online: https://www.chemaxon.com (accessed on 10 May 2021).
- Chen, C.; Hu, S.; Shih, J.; Yang, C.; Luo, Y.; Jhang, R.; Chiang, C.; Hung, Y. Effective synthesis of highly oxidized graphene oxide that enables wafer-scale nanopatterning: Preformed acidic oxidizing medium. Approach Sci. Rep. 2017, 7, 3908. [Google Scholar] [CrossRef] [PubMed]
- Cordero, N.A.; Alonso, J.A. The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 2007, 18, 485705. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, T.; Su, G.; Ma, Y. Online tracking of the thermal reduction of graphene oxide by two-dimensional correlation infrared spectroscopy. Vib. Spectrosc. 2018, 96, 32–45. [Google Scholar] [CrossRef]
- Ma, B.; Rodriguez, R.D.; Ruban, A.; Pavlov, S.; Sheremet, E. The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. Phys. Chem. Chem. Phys. 2019, 21, 10125–10134. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef]
- OriginPro 2021; Version 9.8.0.200; Data Analysis and Graphing Software; OriginLab Corporation: Northampton, MA, USA, 2021.
- Vollebregt, S.; Ishihara, R.; Tichelaar, F.D.; Hou, Y.; Beenakker, C.I.M. Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 2012, 50, 3542–3554. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R.M.; Chhowalla, M.; Cho, K.; Chabal, Y. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C 2011, 115, 19761–19781. [Google Scholar] [CrossRef]
- Benzait, Z.; Chen, P.; Trabzon, L. Enhanced synthesis method of graphene oxide. Nanoscale Adv. 2021, 3, 223–230. [Google Scholar] [CrossRef]
- Sagadevan, S.; Chowdhury, Z.Z.; Hoque, M.E.; Podder, J. Chemically stabilized reduced graphene oxide/zirconia nanocomposite: Synthesis and characterization. Mater. Res. Express 2017, 4, 115031. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Geng, S.; Zhou, C.; Jia, X.; Yang, F.; Zhang, L.; Ren, X.; Yang, H. Preparation of flexible reduced graphene oxide/ poly(vinyl alcohol) film with superior microwave absorption properties. RSC Adv. 2015, 5, 88958. [Google Scholar] [CrossRef]
- Chammingkwan, P.; Matsushita, K.; Taniike, T.; Terano, M. Enhancement in mechanical and electrical properties of polypropylene using graphene oxide grafted with end-functionalized polypropylene. Materials 2016, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, S.; Liao, K.-S.; Wang, A.J.; Zhu, Z.; Alam, K.; McElhenny, B.P.; Bao, J.; Currana, S.A. Functionalized few-layered graphene oxide embedded in an organosiloxane matrix for applications in optical limiting. Chem. Phys. Lett. 2019, 714, 149–155. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Lin, Y.-Y.; Lin, C.-H.; Chan, C.-C.; Huang, Y.-C. High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 2014, 5, 535–550. [Google Scholar] [CrossRef]
- Stroe, M.; Cristea, M.; Matei, E.; Galatanu, A.; Cotet, L.C.; Pop, L.C.; Baia, M.; Danciu, V.; Anghel, I.; Baia, L.; et al. Optical properties of composites based on graphene oxide and polystyrene. Molecules 2020, 25, 2419. [Google Scholar] [CrossRef] [PubMed]
- Mabboux, P.-Y.; Gleason, K.K. Chemical bonding structure of low dielectric constant Si:O:C:H films characterized by solid-state NMR. J. Electrochem. Soc. 2005, 152, F7–F13. [Google Scholar] [CrossRef]
- Harris, R.K.; Kennedy, J.D.; McFarlane, W. NMR and the Periodic Table; Harris, R.K., Mann, B.E., Eds.; Academic Press: London, UK, 1978; p. 309. [Google Scholar]
- Bugrov, A.N.; Zavialova, A.Y.; Smyslov, R.Y.; Anan’eva, T.D.; Vlasova, E.N.; Mokeev, M.V.; Kryukov, A.E.; Kopitsa, G.P.; Pipich, V. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence 2018, 33, 837–849. [Google Scholar] [CrossRef]
- Annual Reports on NMR Spectroscopy; Williams, E.A., Ed.; Academic Press: London, UK, 1983; p. 235. [Google Scholar]
- Ionov, A.N.; Volkov, M.P.; Nikolaeva, M.N. High-temperature superconductivity of graphite particles incorporated in polystyrene. JETP Lett. 2019, 109, 163–165. [Google Scholar] [CrossRef]
- Abrikosov, A.A.; Gor’kov, L.P. Magnetic impurities in nonmagnetic metals. Sov. Phys. JETP 1961, 12, 1243. [Google Scholar]
- Volovik, G.E.; Pudalov, V.M. Graphite on graphite. JETP Lett. 2016, 104, 880–882. [Google Scholar] [CrossRef][Green Version]
- Yuan, S.; Roldán, R.; De Raedt, H.; Katsnelson, M.I. Optical conductivity of disordered graphene beyond the Dirac cone approximation. Phys. Rev. B 2011, 84, 195418. [Google Scholar] [CrossRef]
- Kopnin, N.B.; Heikkila, T.T.; Volovik, G. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 2011, 83, 220503. [Google Scholar] [CrossRef]
- Heikkilä, T.T.; Kopnin, N.B.; Volovik, G.E. Flat bands in topological media. JETP Lett. 2011, 94, 233–239. [Google Scholar] [CrossRef]
- Uchoa, B.; Barlas, Y. Superconducting states in pseudo-Landau-levels of strained graphene. Phys. Rev. Lett. 2013, 111, 046604. [Google Scholar] [CrossRef]
- Celebonovic, V.; Pešic, J.; Gajic, R.; Vasic, B.; Matkovic, A. Selected transport, vibrational, and mechanical properties of low—dimensional systems under strain. J. Appl. Phys. 2019, 125, 154301. [Google Scholar] [CrossRef]
- Kauppila, V.J.; Aikebaier, F.; Heikkilä, T.T. Flat-band superconductivity in strained Dirac materials. Phys. Rev. B 2016, 93, 214505. [Google Scholar] [CrossRef]
- Peltonen, T.J.; Heikkilä, T.T. Flat-band superconductivity in periodically strained graphene: Mean-field and Berezinskii–Kosterlitz–Thouless transition. J. Phys. Condens. Matter 2020, 32, 365603. [Google Scholar] [CrossRef] [PubMed]
System | Elemental Composition at. % | |||
---|---|---|---|---|
C | O | Si | S | |
GO | 62.95 | 36.79 | – | 0.26 |
UV-rGO | 74.21 | 25.47 | – | 0.32 |
UV-rGO modified by TMSPM | 74.59 | 24.78 | 0.28 | 0.35 |
PS with UV-rGO modified by TMSPM | 96.03 | 3.97 | – | – |
Symbol (2) | Sample | 2θ (3), ° | FWHM (4), ° | Dp(5), HM | d(6), HM | n(7) |
---|---|---|---|---|---|---|
GO | Graphite oxide | 10.5 | 1.06 | 7.86 | 0.84 | 9 |
UV-rGO | UV-reduced GO | 23.5 | 9.9 | 0.86 | 0.38 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionov, A.N.; Volkov, M.P.; Nikolaeva, M.N.; Smyslov, R.Y.; Bugrov, A.N. Magnetization of Ultraviolet-Reduced Graphene Oxide Flakes in Composites Based on Polystyrene. Materials 2021, 14, 2519. https://doi.org/10.3390/ma14102519
Ionov AN, Volkov MP, Nikolaeva MN, Smyslov RY, Bugrov AN. Magnetization of Ultraviolet-Reduced Graphene Oxide Flakes in Composites Based on Polystyrene. Materials. 2021; 14(10):2519. https://doi.org/10.3390/ma14102519
Chicago/Turabian StyleIonov, Alexander N., Mikhail P. Volkov, Marianna N. Nikolaeva, Ruslan Y. Smyslov, and Alexander N. Bugrov. 2021. "Magnetization of Ultraviolet-Reduced Graphene Oxide Flakes in Composites Based on Polystyrene" Materials 14, no. 10: 2519. https://doi.org/10.3390/ma14102519
APA StyleIonov, A. N., Volkov, M. P., Nikolaeva, M. N., Smyslov, R. Y., & Bugrov, A. N. (2021). Magnetization of Ultraviolet-Reduced Graphene Oxide Flakes in Composites Based on Polystyrene. Materials, 14(10), 2519. https://doi.org/10.3390/ma14102519