Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method
Abstract
:1. Introduction
2. Experimental Setup and Methodology
3. Sample Characterization
4. Discussion
5. Conclusions
- (1)
- Tests of lubricating properties carried out in accordance with the standard HFRR method for mixtures of diesel fuel and ethanol are associated with long test times, which lead to ethanol evaporation and changes in the composition of the tested fuel sample under elevated temperatures. Therefore, the authors conducted tests using a four-ball machine with a continuously increasing load. The obtained results provided additional insights into the influence of ethanol addition to diesel fuel on lubricating properties, while limiting the ethanol evaporation process.
- (2)
- The presented results show that under the conditions of the lubrication tests carried out using a four-ball machine and assuming the value of the scuffing load as the lubrication criterion, an increase in the ethanol volume fraction in ethanol–diesel fuel blends resulted in the deterioration of the lubricating properties of the blend. In addition, a non-linear decrease in the scuffing load value was noted, as well as an increase in the ethanol volume fraction in the ethanol–diesel fuel blend.
- (3)
- The results observed in this study do not correspond to the results of lubrication tests carried out using the HFRR method presented in [32]. In that study, for the same fuel samples, a negligible influence of ethanol fraction in ethanol–diesel blends on changes in the lubricity of the blend was noted. Discrepancies in the general conclusions are results of different test conditions and different lubricity assessment criteria.
- (4)
- The HFRR method, which is suitable for testing the lubricating properties of diesel fuel, is not appropriate for diesel fuels with volatile additives such as ethanol.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Omri, A.; Bhuiya, M.M.K.; Hazrat, M.A. Modelling of renewable energy economy in Australia. Energy Procedia 2014, 61, 1902–1906. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K.; Mofijur, M. A Review on Socio-economic Aspects of Sustainable Biofuels. Int. J. Glob. Warm. 2016, 10, 32–54. [Google Scholar] [CrossRef]
- Azad, A.K.; Uddin, S.M.A. Performance study of a diesel engine by first generation bio-fuel blends with fossil fuel: An experimental study. J. Renew. Sustain. Energy 2013, 5, 013118. [Google Scholar] [CrossRef]
- Hansen, A.C.; Lyne, P.W.L. Ethanol–Diesel Blends: A Step towards a Bio-Based Fuel for Diesel Engines; ASAE Paper 01-6048; ASAE: St. Joseph, MN, USA, 2001. [Google Scholar]
- Can, Ö.; Ҫelikten, I.; Usta, N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection diesel engine running at different injection pressures. Energy Convers. Manag. 2004, 45, 2429–2440. [Google Scholar] [CrossRef]
- Baczewski, K.; Kałdonski, T. Paliwa do Silników o Zapłonie Samoczynnym; Wydawnictwa Komunikacji i Łacznosci: Warszawa, Poland, 2008. [Google Scholar]
- Gajewska, T.; Malinowski, M.; Szkoda, M. The Use of Biodrying to Prevent Self-Heating of Alternative Fuel. Materials 2019, 12, 3039. [Google Scholar] [CrossRef] [Green Version]
- Mądziel, M.; Campisi, T.; Jaworski, A.; Tesoriere, G. The Development of Strategies to Reduce Exhaust Emissions from Passenger Cars in Rzeszow City—Poland. A Preliminary Assessment of the Results Produced by the Increase of E-Fleet. Energies 2021, 14, 1046. [Google Scholar] [CrossRef]
- Bora, A.P.; Gupta, D.P.; Durbha, K.S. Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel 2020, 259, 116262. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Krawiec, P.; Wieczorek, B. Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel. Energies 2020, 13, 2995. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Potential of Coal–Water Slurries as an Alternative Fuel Source during the Transition Period for the Decarbonization of Energy Production: A Review. Appl. Sci. 2020, 10, 2470. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, L. An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NOx and Soot. Materials 2020, 13, 3551. [Google Scholar] [CrossRef]
- Petrauskienė, K.; Galinis, A.; Kliaugaitė, D.; Dvarionienė, J. Comparative Environmental Life Cycle and Cost Assessment of Electric, Hybrid, and Conventional Vehicles in Lithuania. Sustainability 2021, 13, 957. [Google Scholar] [CrossRef]
- Bajerlein, M.; Karpiuk, W.; Smolec, R. Use of Gas Desorption Effect in Injection Systems of Diesel Engines. Energies 2021, 14, 244. [Google Scholar] [CrossRef]
- Cardone, M.; Marialto, R.; Ianniello, R.; Lazzaro, M.; Di Blasio, G. Spray Analysis and Combustion Assessment of Diesel-LPG Fuel Blends in Compression Ignition Engine. Fuels 2021, 2, 1. [Google Scholar] [CrossRef]
- Sitnik, L.J.; Sroka, Z.J.; Andrych-Zalewska, M. The Impact on Emissions When an Engine Is Run on Fuel with a High Heavy Alcohol Content. Energies 2021, 14, 41. [Google Scholar] [CrossRef]
- Siva Prasad, K.; Srinivasa Rao, S.; Raju, V.R.K. Effect of compression ratio and fuel injection pressure on the characteristics of a CI engine operating with butanol/diesel blends. Alex. Eng. J. 2021, 60, 1183–1197. [Google Scholar] [CrossRef]
- Laza, T.; Bereczky, A. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel 2011, 90, 803–810. [Google Scholar] [CrossRef]
- Brandao, L.F.P.; Suarez, P.A.Z. Study of kinematic viscosity, volatility and ignition quality properties of butanol/diesel blends. Braz. J. Chem. Eng. 2018, 35, 1405–1414. [Google Scholar] [CrossRef] [Green Version]
- Yüksel, B.; Yilmaz, N.; Atmanlı, A.; Ileri, E. Extensive analyses of diesel–vegetable oil–n-Butanol ternary blends in a diesel engine. Appl. Energy 2015, 145, 155–162. [Google Scholar]
- Zoldy, M. Fuel Properties of Butanol—Hydrogenated Vegetable Oil Blends as a Diesel Extender Option for Internal CombustionEngines. Period. Polytech. Chem. 2019, 64, 205–212. [Google Scholar] [CrossRef]
- Lapuerta, M.; Ramos, A.; Barba, J.; Fernandez-Rodriguez, D. Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle. Appl. Energy 2018, 218, 173–183. [Google Scholar] [CrossRef]
- Karwade, A.; Thombre, S.; Bhiogade, G. Investigations on premixed charge compression ignition type combustion using butanol-diesel blends. J. Therm. Sci. Technol. 2020, 15, JTST0026. [Google Scholar] [CrossRef]
- Chacartegui, C.; Lopez, J.; Alfonso, F.; Aakko, P.; Hamelinck, C.; Vossen, G.; Kattenwinkel, H. Blending Ethanol in Diesel. Final report for Lot 3b of the Biodiesel Improvement on Standards, Coordination of Producers and Ethanol Studies (Bioscopes) Project. 2007. Available online: http://ec.europa.eu/energy/renewables/biofuels/doc/standard/lot3b.pdf (accessed on 20 March 2013).
- Hansen, A.C.; Zhang, Q.; Lyne, P.W.L. Ethanol–diesel fuel blends—A review. Bioresour. Technol. 2005, 96, 277–285. [Google Scholar] [CrossRef]
- Hardenberg, H.O.; Ehnert, E.R. Ignition Quality Determination Problems with Alternative Fuels for Compression Ignition Engines; SAE Technical Paper 811212; SAE International: Warrendale, PA, USA, 1981. [Google Scholar]
- Li, D.; Zhen, H.; Lu, X.; Zhang, W.; Yang, J. Physico-chemical properties of ethanol–diesel blend fuel and its effect on performance and emissions of diesel engines. Renew. Energy 2005, 30, 967–976. [Google Scholar] [CrossRef]
- Tutak, W.; Lukács, K.; Szwaja, S.; Bereczky, Á. Alcohol-diesel fuel combustion in the compression ignition engine. Fuel 2015, 154, 196–206. [Google Scholar] [CrossRef]
- Yanowitz, J.; Ratcliff, M.A.; McCormick, R.L.; Taylor, J.D.; Murphy, M.J. Compendium of Experimental Cetane Numbers; Technical Report NREL/TP-5400-61693; National Renewable Energy Laboratory: Denver, CO, USA, 2014.
- Jackson, M.M.; Corkwell, K.C.; DeGroote, C.C. Study of Diesel and Ethanol Blends Stability; SAE Technical Paper 2003-01-3191; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Kwanchareon, P.; Luengnaruemitchai, A.; Jai-In, S. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 2007, 86, 1053–1061. [Google Scholar] [CrossRef]
- Kuszewski, H.; Jaworski, A.; Ustrzycki, A. Lubricity of ethanol–diesel blends—Study with the HFRR method. Fuel 2017, 208, 491–498. [Google Scholar] [CrossRef]
- Gawron, B.; Karp, G. Investigation of lubrication properties of petroleum fuel and biohydrocarbon blends. J. Konbin 2016, 1, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Wojtyniak, M. Development of Laboratory Tests for Diesel Fuel Lubricity Evaluation. J. Kones Intern. Combust. Engines 2005, 12, 375–382. [Google Scholar]
- Weinebeck, A.; Kaminski, S.; Murrenhoff, H.; Leonhard, K. A QSPR-based prediction model for biofuel lubricity. Tribol. Int. 2017, 115, 274–284. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rasul, M.; Hassan, N.M.S. Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel. Energies 2017, 10, 55. [Google Scholar] [CrossRef]
- Kumar, N.; Chauhan, S. Analysis of tribological performance of biodiesel. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 2014, 228, 797–807. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Jamil, M.A.; Rasheed, T.; Sher, F. An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel. Sustainability 2020, 12, 9975. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Sher, F.; Jamil, M.A.; Nuhanović, M.; Razmkhah, O.; Erten, B. Tribological Behaviour and Lubricating Mechanism of Tire Pyrolysis Oil. Coatings 2021, 11, 386. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Masum, B.M.; Arslan, A.; Gulzar, M. Friction and wear characteristics of Calophylluminophyllum biodiesel. Ind. Crop. Prod. 2015, 76, 188–197. [Google Scholar] [CrossRef]
- Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Alabdulkarem, A.; Habibullah, M.; Arslan, A.; Monirul, I.M. Assessment of friction and wear characteristics of Calophyllum inophyllum and palm biodiesel. Ind. Crop. Prod. 2016, 83, 470–483. [Google Scholar] [CrossRef]
- Mujtaba, M.A.; Kalam, M.A.; Masjuki, H.H.; Soudagar, M.E.M.; Khan, H.M.; Fayaz, H.; Farooq, M.; Gul, M.; Ahmed, W.; Ahmad, M.; et al. Effect of palm-sesame biodiesel fuels with alcoholic and nanoparticle additives on tribological characteristics of lubricating oil by four ball tribo-tester. Alex. Eng. J. 2021, 60, 4537–4546. [Google Scholar] [CrossRef]
- Shukla, D.S.; Gondal, A.K.; Nautiyal, P.C. Effect of methanol fuel contaminants in crankcase oils on wear. Wear 1992, 157, 371–380. [Google Scholar] [CrossRef]
- Kuszewski, H.; Pietrucha, K. Badania wpływu zanieczyszczeń eksploatacyjnych na właściwości smarne oleju silnikowego. Monografia pod redakcją naukową K. Lejdy pt. Systemy i środki transportu samochodowego. Transport 2016, 7, 253–260. [Google Scholar]
- Kuszewski, H.; Balawender, K.; Jaworski, A.; Ustrzycki, A. Wpływ dodatku benzyny na właściwości smarne oleju napędowego. Natl. Transp. Univ. Bull. Sci. Tech. J. 2014, 30, 192–198. [Google Scholar]
- Kuszewski, H.; Jaworski, A.; Lejda, K.; Ustrzycki, A.; Woś, P. Badania wpływu dodatku oleju napędowego na właściwości smarne oleju silnikowego. In Eksploatacja i Bezpieczeństwo Pojazdów; Praca Zbiorowa Pod Red. Władysława Mitiańca. Opracowanie Monograficzne; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2014; pp. 137–146. [Google Scholar]
- Rickard, G.; Brook, P. Aviation Turbine Fuel Lubricity—A Review; CRC Report AV-14-11; Coordinating Research Council, Inc.: Alpharetta, GA, USA, 2017. [Google Scholar]
- Jeyashekar, N.; Muzzell, P.; Sattler, E.; Hubble, N. Lubricity and Derived Cetane Number Measurements of Jet Fuels, Alternative Fuels and Fuel Blends; SwRI Interim Report TFLRF No. 405; U.S. Army TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute: San Antonio, TX, USA, 2010. [Google Scholar]
- Labeckas, G.; Slavinskas, S.; Mickevicius, T.; Kreivaitis, R. Tribological study of high pressure fuel pump operating ethanol-diesel fuel blends. Combust. Engines 2019, 177, 132–135. [Google Scholar] [CrossRef]
- Stavinoha, L.; McKay, B.; Villahermosa, L.; Muzzell, P. Evaluation of Ball on Three Disks as Lubricity Evaluator for CI/LI in Synthetic JP-5; U.S. ArmyTank-Automotive Research, Development and Engineering Center Detroit Arsenal; National Automotive Center—Alternative Fuels & Fuel Cell Technology Team: Warren, MI, USA, 2004.
- Agarwal, S.; Chhibber, V.K.; Bhatnagar, A.K. Tribological behavior of diesel fuel and the effect of anti-wear additives. Fuel 2013, 106, 21–29. [Google Scholar] [CrossRef]
- Hsieh, P.Y.; Bruno, T.J. A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Process. Technol. 2015, 129, 52–60. [Google Scholar] [CrossRef]
- T-02U. Four Ball Machine—Manual; Wydawnictwo Instytutu Technologii Eksploatacji: Radom, Poland, 2011. [Google Scholar]
- Kuszewski, H.; Jaworski, A.; Ustrzycki, A. Badania smarności wybranych paliw zastępczych stosowanych w transporcie samochodowym. Natl. Transp. Univ. Bull. A Sci. Tech. J. 2011, 23, 118–123. [Google Scholar]
- Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.; Woś, P. The use of four-ball tester to lubricity tests of selected alternative fuels for diesel engines. Monograph. In Proceedings of the 8th International Green Energy Conference, Kiev, Ukraine, 17–19 June 2013. [Google Scholar]
- Szczerek, M.; Tuszyński, W. Badania Tribologiczne—Zacieranie; Wydawnictwo Instytutu Technologii Eksploatacji: Radom, Poland, 2000. [Google Scholar]
- Michalczewski, R.; Piekoszewski, W.; Tuszyński, W.; Szczerek, M.; Wulczyński, J. The New Methods for Scuffing and Pitting Investigation of Coated Materials for Heavy Loaded, Lubricated Elements. In Tribology—Lubricants and Lubrication; Kuo, C.-H., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Kuszewski, H.; Jaworski, A.; Ustrzycki, A.; Lejda, K.; Balawender, K.; Woś, P. Use of the constant volume combustion chamber to examine the properties of autoignition and derived cetane number of mixtures of diesel fuel and ethanol. Fuel 2017, 200, 564–575. [Google Scholar] [CrossRef]
- Namešanský, P.; Lábaj, J.; Fabrici, J. Influence of the ethanol added into petrol and diesel fuel. Eksploat. Niezawodn. 2006, 4, 67–70. [Google Scholar]
- Hansen, A.C.; Hornbaker, R.H.; Zhang, Q.; Lyne, P.W. On-farm evaluation of diesel fuel oxygenated with ethanol. In Proceedings of the 2001 ASAE Annual Meeting, Sacramento, CA, USA, 30 July–1 August 2001. [Google Scholar] [CrossRef]
Steel grade | ŁH15 |
Diameter, inch | 1/2 |
Roughness Ra, µm | 0.032 |
Hardness, HRC | 60–65 |
Chemical composition, % | C: 0.95–1.10, Mn: 0.25–0.45, Si: 0.15–0.35, P: <0.027, S: <0.020, Cr: 1.30–1.65, Ni: <0.3, Cu: <0.25 |
Specification | Units | Detail | Accuracy |
---|---|---|---|
Model | - | T-02U | - |
Speed | RPM | 300–1800 | 1 |
Sample temperature | °C | ambient temperature to 180 | 0.5 |
Maximum axial load | N | 7850 | 0.5 |
Accuracy of motion resistance measurement | % | sensor Hottinger S2; 0–100 N | 0.02 |
Accuracy of load measurement | % | force transducer Hottinger C9B; 0–10 kN | 0.5 |
Sample Label | Volume Fraction (%) | |
---|---|---|
Diesel Fuel | Ethanol | |
DF-ET-0 | 100 | 0 |
DF-ET-2 | 98 | 2 |
DF-ET-4 | 96 | 4 |
DF-ET-6 | 94 | 6 |
DF-ET-8 | 92 | 8 |
DF-ET-10 | 90 | 10 |
DF-ET-12 | 88 | 12 |
DF-ET-14 | 86 | 14 |
Property | Method | Value | |||||||
---|---|---|---|---|---|---|---|---|---|
DF-ET-0 | DF-ET-2 | DF-ET-4 | DF-ET-6 | DF-ET-8 | DF-ET-10 | DF-ET-12 | DF-ET-14 | ||
Derived cetane number (DCN) | ASTM D7668 | 55.2 | 50.3 1 | 48.6 1 | 47.4 1 | 45.8 1 | 45.4 1 | 42.7 1 | 41.3 1 |
Higher heating value (MJ/kg) | PN-C-04375-3 | 45.97 | 45.42 | 44.90 | 44.71 | 44.36 | 43.98 | 43.68 | 43.30 |
Kinematic viscosity at 60 °C (mm2/s) | PN-EN ISO 3104 | 2.04 | 1.91 | 1.84 | 1.78 | 1.72 | 1.67 | 1.64 | 1.60 |
Dynamic viscosity at 60 °C (mPa·s) | PN-EN ISO 3104 | 1.64 | 1.53 | 1.47 | 1.42 | 1.37 | 1.33 | 1.30 | 1.27 |
Density at 60 °C (g/cm3) | PN-EN ISO 12185 | 0.803 | 0.801 | 0.799 | 0.798 | 0.797 | 0.796 | 0.795 | 0.793 |
Flash point (°C) | EN ISO 2719 A | 65.5 | - | - | - | - | - | - | - |
Water content (mg/kg) | EN ISO 12937 | 23 | 112 | 179 | 259 | 343 | 427 | 498 | 587 |
CFPP (°C) | EN 116 | −5 | −7 | −8 | −7 | −6 | −7 | −6 | −6 |
Sulphur content (mg/kg) | PN-EN ISO 20846 | 5.2 | - | - | - | - | - | - | - |
Lubricity WSD (μm) | PN-EN ISO 12156(1) | 189.5 | 196.5 | 188.0 | 188.5 | 197.0 | 180.5 | 184.5 | 193.0 |
FAME content (% v/v) | Infrared analysis (instrument TD PPA–PetroSpec by PAC) | 6.70 | 6.57 2 | 6.43 2 | 6.30 2 | 6.16 2 | 6.03 2 | 5.90 2 | 5.76 2 |
Fuel Sample | Value of Scuffing Load PT (N) | Percentage Decrease of Scuffing Load PT Compared to Sample DF-ET-0 (%) | Initiation Time of the Scuffing from the Start of the Test Run (s) |
---|---|---|---|
DF-ET-0 | 730 ± 10 | - | 1.87 |
DF-ET-2 | 600 ± 10 | 18 | 1.60 |
DF-ET-4 | 500 ± 10 | 32 | 1.36 |
DF-ET-6 | 420 ± 10 | 42 | 1.13 |
DF-ET-8 | 430 ± 10 | 41 | 1.13 |
DF-ET-10 | 410 ± 10 | 44 | 1.13 |
DF-ET-12 | 380 ± 10 | 48 | 1.00 |
DF-ET-14 | 370 ± 10 | 49 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuszewski, H.; Jaworski, A.; Mądziel, M. Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method. Materials 2021, 14, 2492. https://doi.org/10.3390/ma14102492
Kuszewski H, Jaworski A, Mądziel M. Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method. Materials. 2021; 14(10):2492. https://doi.org/10.3390/ma14102492
Chicago/Turabian StyleKuszewski, Hubert, Artur Jaworski, and Maksymilian Mądziel. 2021. "Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method" Materials 14, no. 10: 2492. https://doi.org/10.3390/ma14102492
APA StyleKuszewski, H., Jaworski, A., & Mądziel, M. (2021). Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method. Materials, 14(10), 2492. https://doi.org/10.3390/ma14102492