The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simizu, S.; Ohodnicki, P.R.; McHenry, M.E. Metal amorphous nanocomposite soft magnetic material-enabled high power density, rare earth free rotational machines. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Leary, A.M.; Ohodnicki, P.R.; McHenry, M.E. Soft magnetic materials in high-frequency, high-power conversion applications. JOM 2012, 64, 772–781. [Google Scholar] [CrossRef]
- Mazaleyrat, F.; Varga, L.K. Ferromagnetic nanocomposites. J. Magn. Magn. Mater. 2000, 215, 253–259. [Google Scholar] [CrossRef]
- Willard, M.A. Nanocrystalline Soft Magnetic Alloys: Two Decades of Progress. Handb. Magn. Mater. 2013 21, 173–342.
- Kurlyandskaya, G.V.; Shcherbinin, S.V.; Volchkov, S.O.; Bhagat, S.M.; Calle, E.; Pérez, R.; Vazquez, M. Soft magnetic materials for sensor applications in the high frequency range. J. Magn. Magn. Mater. 2018, 459, 154–158. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Yang, Y.; Zhu, Z.; Zhang, W. Soft magnetic Co-based Co–Fe–B–Si–P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T. J. Alloy. Compd. 2020, 843, 154862. [Google Scholar] [CrossRef]
- Warski, T.; Wlodarczyk, P.; Polak, M.; Zackiewicz, P.; Radon, A.; Wojcik, A.; Szlezynger, M.; Kolano-Burian, A.; Hawelek, L. Influence of Cu Content on Structure and Magnetic Properties in Fe86-xCuxB14 Alloys. Materials 2020, 13, 1451. [Google Scholar] [CrossRef]
- Zhukova, V.; Korchuganova, O.A.; Aleev, A.A.; Tcherdyntsev, V.V.; Churyukanova, M.; Medvedeva, E.V.; Seils, S.; Wagner, J.; Ipatov, M.; Blanco, J.M.; et al. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires. J. Magn. Magn. Mater. 2017, 433, 278–284. [Google Scholar] [CrossRef]
- Sagasti, A.; Palomares, V.; Porro, J.M.; Orue, I.; Sanchez-Ilarduya, M.B.; Lopes, A.C.; Gutierrez, J. Magnetic, Magnetoelastic and Corrosion Resistant Properties of (Fe–Ni)-Based Metallic Glasses for Structural Health Monitoring Applications. Materials 2020, 13, 57. [Google Scholar] [CrossRef]
- Jin, Y.; Kim, J.; Guillaume, B. Review of critical material studies. Resour. Conserv. Recycl. 2016, 113, 77–87. [Google Scholar] [CrossRef]
- Shen, B.; Inoue, A.; Chang, C. Superhigh strength and good soft-magnetic properties of (Fe, Co)–B–Si–Nb bulk glassy alloys with high glass-forming ability. Appl. Phys. Lett. 2004, 85, 4911–4913. [Google Scholar] [CrossRef]
- Amiya, K.; Urata, A.; Nishiyama, N.; Inoue, A. Thermal stability and magnetic properties of (Fe, Co)–Ga–(P, C, B, Si) bulk glassy alloys. Mater. Sci. Eng. A 2007, 449, 356–359. [Google Scholar] [CrossRef]
- Aronhime, N.; Zoghlin, E.; Keylin, V.; Jin, X.; Ohodnicki, P.; McHenry, M.E. Magnetic properties and crystallization kinetics of (Fe100− xNix) 80Nb4Si2B14 metal amorphous nanocomposites. Scr. Mater. 2018, 142, 133–137. [Google Scholar] [CrossRef]
- Aronhime, N.; DeGeorge, V.; Keylin, V.; Ohodnicki, P.; McHenry, M.E. The effects of strain-annealing on tuning permeability and lowering losses in Fe-Ni-based metal amorphous nanocomposites. JOM 2017, 69, 2164–2170. [Google Scholar] [CrossRef]
- Suzuki, K.; Cadogan, J.M.; Aoki, K.; Tsai, A.P.; Inoue, A.; Masumoto, T. Nanocrystallization and glass transition in Cu-Free Fe-Nb-B soft magnetic alloys. Scr. Mater. 2001, 44, 1417–1420. [Google Scholar] [CrossRef]
- Liu, T.; Wang, A.; Zhao, C.; Yue, S.; Wang, X.; Liu, C.T. Compositional design and crystallization mechanism of High Bs nanocrystalline alloys. Mater. Res. Bull. 2019, 112, 323–330. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Málek, J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 1995, 267, 61–73. [Google Scholar] [CrossRef]
- Snoek, J.L. Gyromagnetic resonance in ferrites. Nature 1947, 160, 90. [Google Scholar] [CrossRef] [PubMed]
- Rozanov, K.N.; Koledintseva, M.Y. Application of generalized Snoek’s law over a finite frequency range: A case study. J. Appl. Phys. 2016, 119, 073901. [Google Scholar] [CrossRef]
- Li, Z.; Parsons, R.; Zang, B.; Kishimoto, H.; Shoji, T.; Kato, A.; Suzuki, K. Dramatic grain refinement and magnetic softening induced by Ni addition in FeB based nanocrystalline soft magnetic alloys. Scr. Mater. 2020, 181, 82–85. [Google Scholar] [CrossRef]
- Yoshizawa, Y.A.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Komatsu, T.; Matusita, K.; Yokota, R. Volume changes during the structural relaxation and crystallization in FeNi based metallic glasses. J. Non-Cryst. Sol. 1985, 69, 347–359. [Google Scholar] [CrossRef]
- Miyazaki, N.; Wakeda, M.; Wang, Y.J.; Ogata, S. Prediction of pressure-promoted thermal rejuvenation in metallic glasses. NPJ Comput. Mater. 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Nagel, C.; Rätzke, K.; Schmidtke, E.; Faupel, F.; Ulfert, W. Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition. Phys. Rev. B 1999, 60, 9212. [Google Scholar] [CrossRef]
- Imran, M.M.; Bhandari, D.; Saxena, N.S. Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass. Phys B Condens. Matter 2001, 293, 394–401. [Google Scholar] [CrossRef]
- Slipenyuk, A.; Eckert, J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 2004, 50, 39–44. [Google Scholar] [CrossRef]
- Waseda, Y.; Masumoto, T. Structure of amorphous Fe80-P13-C7 alloy by X-ray diffraction. Z. Für. Phys. B Condens. Matter 1975, 22, 121–126. [Google Scholar] [CrossRef]
- Miyazaki, T.; Hisatake, K.; Takahashi, M. Magnetic Relaxation in Amorphous (Fe1-xNix)77Si10B13 Alloys. Jpn. J. Appl. Phys. 1983, 22, 1277–1282. [Google Scholar] [CrossRef]
- Escobar, M.A.; Yavari, A.R.; Barrue, R.; Perron, J.C. On the optimization of soft-magnetic properties of metallic glasses by dynamic current annealing. IEEE Trans. Magn. 1992, 28, 1911–1916. [Google Scholar] [CrossRef]
- Ri, M.C.; Sohrabi, S.; Ding, D.W.; Dong, B.S.; Zhou, S.X.; Wang, W.H. Serrated magnetic properties in metallic glass by thermal cycle. Chin. Phys. B 2017, 26, 066101. [Google Scholar] [CrossRef]
- McHenry, M.E.; Laughlin, D.E. Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1881–2008. [Google Scholar]
- Hono, K.; Ping, D.H.; Ohnuma, M.; Onodera, H. Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Mater. 1999, 47, 997–1006. [Google Scholar] [CrossRef]
- Pradeep, K.G.; Herzer, G.; Choi, P.; Raabe, D. Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing. Acta Mater. 2014, 68, 295–309. [Google Scholar] [CrossRef]
- Shah, M.; Satalkar, M.; Kane, S.N.; Ghodke, N.L.; Sinha, A.K.; Varga, L.K.; Araujo, J.P. Thermal treatment induced modification of structural, surface and bulk magnetic properties of Fe61. 5Co5Ni8Si13. 5B9Nb3 metallic glass. AIP Conf. Proc. 2018, 1953, 120043. [Google Scholar]
- McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015, 48, 333001. [Google Scholar] [CrossRef]
Alloy | Ta [°C]/time | Ps [W/kg] | Bs [T] | Hc [A/m] | µ’ | fcut-off [kHz] | Ref |
---|---|---|---|---|---|---|---|
Fe72Ni8Nb4Si2B14 | 370/20 min | P10/50 = 0.092 | 1.09 | 3.95 | 3100 | 507 | This work |
Fe72Ni8Nb4Si2B14 | 440/20 min | P10/50 = 2.6 | 1.29 | 125 | - | - | This work |
Fe70Ni10Nb4Si2B14 | as-cast | - | ~1.62 | - | - | - | [13] |
Fe60Ni20Nb4Si2B14 | as-cast | - | ~1.44 | - | - | - | [13] |
Fe56Ni24Nb4Si2B14 | 440/60 min | P1060 = 0.12 | ~1.1 | 7 | 4000 | - | [14] |
Fe56Ni24Nb4Si2B14 | 440/60 min 200 MPa | - | 1.3 | - | 16,000 | - | [14] |
Fe77.4Ni8.6B14 | RA* 490/0.5s | - | 1.7 | 2.6 | - | - | [21] |
Fe68.8Ni17.2B14 | RA* 510/0.5s | - | 1.54 | 4.4 | - | - | [21] |
Fe60.2Ni25.8B14 | RA* 510/0.5s | - | 1.37 | 3.2 | - | - | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawelek, L.; Warski, T.; Wlodarczyk, P.; Polak, M.; Zackiewicz, P.; Maziarz, W.; Wojcik, A.; Steczkowska-Kempka, M.; Kolano-Burian, A. The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy. Materials 2021, 14, 5. https://doi.org/10.3390/ma14010005
Hawelek L, Warski T, Wlodarczyk P, Polak M, Zackiewicz P, Maziarz W, Wojcik A, Steczkowska-Kempka M, Kolano-Burian A. The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy. Materials. 2021; 14(1):5. https://doi.org/10.3390/ma14010005
Chicago/Turabian StyleHawelek, Lukasz, Tymon Warski, Patryk Wlodarczyk, Marcin Polak, Przemyslaw Zackiewicz, Wojciech Maziarz, Anna Wojcik, Magdalena Steczkowska-Kempka, and Aleksandra Kolano-Burian. 2021. "The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy" Materials 14, no. 1: 5. https://doi.org/10.3390/ma14010005
APA StyleHawelek, L., Warski, T., Wlodarczyk, P., Polak, M., Zackiewicz, P., Maziarz, W., Wojcik, A., Steczkowska-Kempka, M., & Kolano-Burian, A. (2021). The Structure and Magnetic Properties of Rapidly Quenched Fe72Ni8Nb4Si2B14 Alloy. Materials, 14(1), 5. https://doi.org/10.3390/ma14010005