Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Materials
2.2. Test Methods
3. Test results and Discussion
3.1. Heat of Cement Hydration
3.2. Density and Thermal Conductivity
3.3. Properties of the Hardened Mortars at the Temperature of 20 °C
3.4. Properties of Hardened Mortars after Exposure to High Temperature
4. Conclusions
- The addition of the IOC does not affect chemically the cement hydration. When used in the large amount like 30% of the aggregate mass, however, can cause some acceleration of the cement hydration as a result of the physical impact of the fine-grained addition.
- All mortars containing the IOC showed an increased compressive strength after 28 days of curing, as compared to the reference mortar M0 (without the IOC). This is an effect of the better filling the cement matrix with the concentrate finer and harder than the natural sand.
- Due to the higher specific weight of the IOC in relation to the natural aggregate, the apparent density of the mortars increases with the growing content of the IOC addition. The specimens of the mortars containing 10%, 20% and 30% of the IOC have demonstrated the higher thermal conductivity than the reference mortar, in proportion to the IOC content. This is explained by the high thermal conductivity of the IOC itself as well as the low absorbability (low open porosity).
- The addition of the IOC improves significantly the residual strength of the cement mortars at the high temperature. The use of only 10% of the IOC addition makes possible to keep 95% of the initial compressive strength of the mortar at the temperature of 300 °C. The mortars containing the IOC maintain from 76% to 83% of their initial compressive strength at 450 °C, while the reference mortar only 66%. This is caused by acting of the IOC as a filler, which leads to the compaction of the structure of the cement matrix. High content of Fe2O3 in the IOC causes the limitation of the composite cracking due to the high thermal conductivity and phase transition of iron oxide at the temperature of 723 °C. The key issue for the desirable improvement of the mechanical performance of the mortars contained IOC is ensuring the proper workability of the mortars for reducing their porosity. This can be obtained by using the increased amount of a superplasticizer.
- Due to the higher apparent density and improved flexural and compressive strength of the mortars with the addition of the IOC at the high temperature, the IOC can be used as a substitute for the fine aggregate in the production of the mortars resistant to the high temperature (up to 450 °C), as well as to produce the heavy-weight mortars and concretes for the structures exposed to ionizing radiation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naik, T.R. Sustainability of Concrete Construction. Pract. Period. Struct. Des. Constr. 2008, 13, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, S.; Lavagna, M.; Campioli, A. Guidelines for Effective and Sustainable Recycling of Construction and Demolition Waste. In Designing Sustainable Technologies, Products and Policies; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 211–221. [Google Scholar]
- Mah, C.M.; Fujiwara, T.; Ho, C.S. Concrete waste management decision analysis based on life cycle assessment. Chem. Eng. Trans. 2017, 56, 25–30. [Google Scholar]
- Bravo, M.; Duarte, A.P.C.; de Brito, J.; Evangelista, A.; Pedro, D. On the Development of a Technical Specification for the Use of Fine Recycled Aggregates from Construction and Demolition Waste in Concrete Production. Materials 2020, 13, 4228. [Google Scholar] [CrossRef]
- Samal, S.; Mohapatra, B.K.; Mukherjee, P.S.; Chatterjee, S.K. Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production. J. Alloy. Compd. 2009, 474, 484–489. [Google Scholar] [CrossRef]
- Chyliński, F.; Bobrowicz, J.; Łukowski, P. Undissolved Ilmenite Mud from TiO2 Production-Waste or a Valuable Addition to Portland Cement Composites? Materials 2020, 13, 3555. [Google Scholar] [CrossRef]
- Chyliński, F.; Kuczyński, K.; Łukowski, P. Application of ilmenite mud waste as an addition to concrete. Materials 2020, 13, 866. [Google Scholar] [CrossRef] [Green Version]
- Giergiczny, Z.; Król, A. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J. Hazard. Mater. 2008, 160, 247–255. [Google Scholar] [CrossRef]
- Khrunyk, S.; Sanytskyy, M. Environmental impact assessment of alternative fuels co-processing in rotary cement kilns. Eng. Environ. Prot. 2014, 17, 147–155. [Google Scholar]
- Sobolev, K.; Arikan, M. High Volume Mineral Additive for ECO-Cement. Am. Ceram. Soc. Bull. 2002, 81, 39–43. [Google Scholar]
- Sobolev, K. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges. Sci. World J. 2003, 3, 308–318. [Google Scholar] [CrossRef]
- Marthong, C.; Agrawal, T.P. Effect of fly ash additive on concrete properties. Int. J. Eng. Res. Appl. 2012, 2, 1986–1991. [Google Scholar]
- Giergiczny, Z. Fly ash and slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G. Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2869–2876. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 206+A1:2016-12 Concrete-Specification, Performance, Production and Conformity; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Wang, K. Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 20–21 May 2004; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2004. [Google Scholar]
- Hycnar, J.; Kochański, B.; Tora, B. Manufacture and Properties of Magnetite Dust from by-products of Carbon Combustion. J. Pol. Miner. Eng. Soc. 2012, 2, 1–10. [Google Scholar]
- Meshram, P.; Purohit, B.K.; Sinha, M.K.; Sahu, S.K.; Pandey, B.D. Demineralization of low grade coal—A review. Renew. Sustain. Energy Rev. 2015, 41, 745–761. [Google Scholar] [CrossRef]
- Hycnar, J.; Tora, B. Analysis of selected metals content in coals and products of their combustion. Cuprum Ore Min. Sci. Tech. Mag. 2015, 75, 157–168. [Google Scholar]
- Lin, K.-L.; Lin, C.-Y. Hydration characteristics of waste sludge ash utilized as raw cement material. Cem. Concr. Res. 2005, 35, 1999–2007. [Google Scholar] [CrossRef]
- Vangelatos, I.; Angelopoulos, G.N.; Boufounos, D. Utilization of ferroalumina as raw material in the production of Ordinary Portland Cement. J. Hazard. Mater. 2009, 168, 473–478. [Google Scholar] [CrossRef]
- Puertas, F.; Garcia-Diaz, I.; Barba, A.; Gazulla, M.F.; Palacios, M.; Gómez, M.P.; Martínez-Ramírez, S. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Compos. 2008, 30, 798–805. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Bao, S.; Chen, T. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production. Adv. Mater. Sci. Eng. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mironovs, V.; Bronka, J.; Korjakins, A.; Kazjonovs, J. Possibilities of application iron containing waste materials in manufacturing of heavy concrete. In Proceeding Civil Engineering’11: 3rd International Scientific Conference, 2011; Latvia University of Agriculture: Jelgava, Latvia, 2011; pp. 14–19. [Google Scholar]
- Ismail, Z.Z.; Al-Hashmi, E.A. Reuse of waste iron as a partial replacement of sand in concrete. Waste Manag. 2008, 28, 2048–2053. [Google Scholar] [CrossRef]
- Tian, Z.-X.; Zhao, Z.-H.; Dai, C.-Q.; Liu, S.-J. Experimental study on the properties of concrete mixed with iron ore tailings. Adv. Mater. Sci. Eng. 2016, 42, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aristimunho, P.B.; Bertocini, S.R. Application of iron ore mud in powder form in Portland cement presence. IBRACON Struct. Mater. J. 2012, 5, 153–165. [Google Scholar] [CrossRef]
- Szaj, P. Effect of some mineral supplements on rheological properties of cement slurries. Min. Sci. 2012, 134, 285–294. (In Polish) [Google Scholar]
- Mann, H.S.; Brar, G.S.; Mann, K.S.; Mudahar, G.S. Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nucl. Eng. Technol. 2016, 48, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- Rezaei-Ochbelagh, D.; Azimkhani, S. Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Appl. Radiat. Isot. 2016, 70, 2282–2286. [Google Scholar] [CrossRef]
- Cullu, M.; Ertas, H. Determination of the effect of lead mine waste aggregate on some concrete properties and radiation shielding. Constr. Build. Mater. 2016, 125, 625–631. [Google Scholar] [CrossRef]
- Azeez, A.B.; Mohammed, K.S.; Abdullah, M.M.A.B.; Zulkepli, N.N.; Sandu, A.V.; Hussin, K.; Rahmat, A. Design of flexible green anti-radiation shielding material against gamma-ray. Mater. Plast. 2014, 51, 300–308. [Google Scholar]
- Yao, Y.; Zhang, X.; Li, M.; Yang, R.; Jiang, T.-J.; Lv, J. Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive. Radiat. Phys. Chem. 2016, 127, 188–193. [Google Scholar] [CrossRef]
- Sikora, P.; Elrahman, A.M.; Horszczaruk, E.; Brzozowski, P.; Dietmar, S. Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Constr. Build. Mater. 2019, 204, 113–121. [Google Scholar] [CrossRef]
- Oto, B.; Gür, A. Gamma-ray shielding of concretes including magnetite in different rate. Int. J. Phys. Sci. 2013, 8, 310–314. [Google Scholar]
- Gallala, W.; Hayouni, Y.; Gaied, M.E.; Fusco, M.; Alsaied, J.; Bailey, K.; Bourham, M. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste. Ann. Nucl. Energy 2017, 101, 600–606. [Google Scholar] [CrossRef]
- Ugama, T.; Ejeh, S.; Amartey, D. Effect of iron ore tailing on the properties of concrete. Civ. Environ. Res. 2014, 6, 7–14. [Google Scholar]
- Noori, K.M.-G.; Ibrahim, H.H. Mechanical Properties of Concrete Using Iron Waste as a Partial Replacement of Sand. Eurasian J. Sci. Eng. 2018, 3, 75–82. [Google Scholar]
- Tayeh, B.A.; Al Saffar, D.M. Utilization of Waste Iron Powder as Fine Aggregate in Cement Mortar. J. Eng. Res. Technol. 2018, 5, 22–27. [Google Scholar]
- International Federation for Structural Concrete. Fire Design of Concrete Structures—Materials, Structures and Modelling; FIB: Lausanne, Switzerland, 2007. [Google Scholar]
- Hager, I. Behaviour of cement concrete at high temperature. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 145–154. [Google Scholar] [CrossRef]
- Khoury, G.A. Effect of fire on concrete and concrete structures. Prog. Struct. Eng. Mater. 2000, 2, 429–447. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015, 93, 371–383. [Google Scholar] [CrossRef]
- Tufail, M.; Shahzada, K.; Gencturk, B.; Wei, J. Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete. Int. J. Concr. Struct. Mater. 2017, 11, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Beaucour, A.-L.; Hebert, R.; Noumowe, A.; Ledesert, B. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cem. Concr. Res. 2011, 41, 392–402. [Google Scholar] [CrossRef]
- Haneefa, K.M.; Santhanam, M.; Parida, F.C. Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry. Nucl. Eng. Des. 2013, 258, 76–88. [Google Scholar] [CrossRef]
- Fernandes, B.; Gil, A.M.; Bolina, F.L.; Tutikian, B.F. Microstructure of concrete subjected to elevated temperatures: Physico-chemical changes and analysis techniques. IBRACON Struct. Mater. J. 2017, 10, 838–863. [Google Scholar] [CrossRef] [Green Version]
- Peng, G.-F.; Huang, Z.-S. Change in microstructure of hardened cement paste subjected to elevated temperatures. Constr. Build. Mater. 2008, 22, 593–599. [Google Scholar] [CrossRef]
- Sikora, P.; Elrahman, M.A.; Stephan, D. The Influence of Nanomaterials on the Thermal Resistance of Cement-Based Composites—A Review. Nanomaterials 2018, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization. BS-EN 196-1:2016 Methods of Testing Cement. Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- RILEM TC 200-HTC. Recommendation of RILEM TC-HTC ‘Mechanical concrete properties at high temperature-Modelling and applications’. Mater. Struct. 2005, 38, 913–919. [Google Scholar] [CrossRef]
- European Committee for Standardization. BS-EN 197-1:2011 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Scrivener, K.; Ouzia, A.; Juilland, P.; Mohamed, A.K. Advances in understanding cement hydration mechanisms. Cem. Concr. Res. 2019, 124, 105823. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Z.; Jin, C.; Wang, F.; Lu, X. An experimental study on thermal conductivity of iron ore sand cement mortar. Constr. Build. Mater. 2015, 101, 932–941. [Google Scholar] [CrossRef]
- Rodriguez, E.T.; Garbev, K.; Merz, D.; Black, L.; Richardson, I.G. Thermal stability of C-S-H phases and applicability of Richardson andGroves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem. Concr. Res. 2017, 93, 45–56. [Google Scholar] [CrossRef]
- Saad, M.; Abo-El-Enein, S.A.; Hanna, G.B.; Kotkata, M.F. Effect of temperature on physical and mechanical properties of concrete containing silica fume. Cem. Concr. Res. 1996, 26, 669–675. [Google Scholar] [CrossRef]
- Handoo, S.K.; Agarwal, S.; Agarwal, S.K. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem. Concr. Res. 2002, 32, 1009–1018. [Google Scholar] [CrossRef]
- Wang, X.-S.; Wu, B.-S.; Wang, Q.-Y. Online SEM investigation of microcrack characteristics of concretes at various temperatures. Cem. Concr. Res. 2005, 35, 1385–1390. [Google Scholar] [CrossRef]
- Peng, G.; Chan, S.Y.N.; Yan, J.; Liu, Y.; Yi, Q. Characteristic of crack growth in high performance concrete subjected to fire. J. Mater. Sci. Technol. 2005, 21, 118–122. [Google Scholar]
- Matesova, D.; Bonen, D.; Shah, S.P. Factors affecting the resistance of cementitious materials at high temperatures and medium heating rates. Mater. Struct. 2006, 39, 919–935. [Google Scholar] [CrossRef] [Green Version]
- Aydin, S.; Baradan, B. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars. Cem. Concr. Res. 2007, 37, 988–995. [Google Scholar] [CrossRef]
- Morsy, M.S.; Al-Salloum, Y.A.; Abbas, H.; Alsayed, S.H. Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Constr. Build. Mater. 2012, 35, 900–905. [Google Scholar] [CrossRef]
- Takeda, M.; Onishi, T.; Nakakubo, S.; Fujimoto, S. Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Mater. Trans. 2009, 50, 2242–2246. [Google Scholar] [CrossRef] [Green Version]
- Furlani, E.; Maschio, S. Steel scale waste as component in mortars production: An experimental study. Case Stud. Constr. Mater. 2016, 4, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.A.; Easterling, K.E.; Sherif, M.Y. Phase Transformations in Metals and Alloys; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Kasina, M.; Michalik, M. Iron metallurgy slags as a potential source of critical elements-Nb, Ta and REE. Mineralogia 2016, 47, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Li, K.; Ni, W.; Fan, D. Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures. Minerals 2019, 9, 232. [Google Scholar] [CrossRef] [Green Version]
Compound Formula | Fe2O3 | SiO2 | Al2O3 | CaO | MgO | Cr2O3 | NiO | SO3 | MnO |
Concentration | 69.451 | 11.425 | 5.643 | 4.892 | 3.404 | 3.364 | 0.452 | 0.439 | 0.392 |
Compound Formula | TiO2 | Na2O | P2O5 | K2O | V2O5 | BaO | ZnO | CuO | Cl |
Concentration | 0.121 | 0.120 | 0.069 | 0.061 | 0.057 | 0.041 | 0.031 | 0.026 | 0.012 |
Sieve Size [mm] | Passing (%) | |||||
---|---|---|---|---|---|---|
2 | 1 | 0.5 | 0.25 | 0.125 | 0.0625 | |
River sand | 100 | 86.6 | 45 | 8.1 | 0.6 | 0.1 |
IOC | 100 | 100 | 98.9 | 47.65 | 1.01 | 0.0 |
Mortar Code | Cement | Water | Fine Aggregate | IOC | IOC (% of Aggregate Mass) | Super-Plasticizer | Flow [mm] |
---|---|---|---|---|---|---|---|
M0 | 512 | 256 | 1535 | 0 | 0 | 0 | 150 |
M10 | 512 | 256 | 1381 | 154 | 10 | 5.85 | 158 |
M20 | 512 | 256 | 1228 | 307 | 20 | 6.75 | 157 |
M30 | 512 | 256 | 1074 | 461 | 30 | 9.90 | 158 |
Paste Designation | Components (g) | Ratio | |||
---|---|---|---|---|---|
Cement | IOC | Water | Water/Cement w/c | Water/Binder w/b | |
P0 | 30 | 0 | 15 | 0.50 | 0.5 |
P10 | 27 | 3 | 15 | 0.56 | 0.5 |
P20 | 24 | 6 | 15 | 0.63 | 0.5 |
P30 | 21 | 9 | 15 | 0.71 | 0.5 |
Mortar Code | M0 | M10 | M20 | M30 |
---|---|---|---|---|
Flexural strength (MPa) | 5.92 ± 0.30 | 6.05 ± 0.30 | 6.26 ± 0.31 | 6.08 ± 0.30 |
Compressive strength (N/mm2) | 48.68 ± 2.43 | 53.05 ± 2.65 | 53.90 ± 2.70 | 52.98 ± 2.65 |
Density (kg/m3) | 2214 ± 26 | 2273 ± 27 | 2304 ± 26 | 2344 ± 30 |
Density after drying at 105 °C (kg/m3) | 2075 ± 7 | 2101 ± 52 | 2153 ± 28 | 2180 ± 8 |
Mortar Code | Flexural Strength [MPa] | Compressive Strength [MPa] | ||||||
---|---|---|---|---|---|---|---|---|
20 °C | 300 °C | 450 °C | 600 °C | 20 °C | 300 °C | 450 °C | 600 °C | |
M0 | 5.92 | 3.24 | 2.64 | 0.46 | 48.68 | 39.62 | 32.43 | 16.17 |
M10 | 6.05 | 4.90 | 3.79 | 1.12 | 53.50 | 50.85 | 40.97 | 23.92 |
M20 | 6.26 | 5.45 | 4.40 | 1.10 | 53.90 | 51.56 | 41.39 | 24.08 |
M30 | 6.08 | 5.60 | 4.82 | 1.14 | 52.98 | 52.11 | 44.12 | 24.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borucka-Lipska, J.; Brzozowski, P.; Błyszko, J.; Bednarek, R.; Horszczaruk, E. Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials 2021, 14, 148. https://doi.org/10.3390/ma14010148
Borucka-Lipska J, Brzozowski P, Błyszko J, Bednarek R, Horszczaruk E. Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials. 2021; 14(1):148. https://doi.org/10.3390/ma14010148
Chicago/Turabian StyleBorucka-Lipska, Jolanta, Piotr Brzozowski, Jarosław Błyszko, Roman Bednarek, and Elżbieta Horszczaruk. 2021. "Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate" Materials 14, no. 1: 148. https://doi.org/10.3390/ma14010148
APA StyleBorucka-Lipska, J., Brzozowski, P., Błyszko, J., Bednarek, R., & Horszczaruk, E. (2021). Effects of Elevated Temperatures on the Properties of Cement Mortars with the Iron Oxides Concentrate. Materials, 14(1), 148. https://doi.org/10.3390/ma14010148