Impact of an Antiresonant Oxide Island on the Lasing of Lateral Modes in VCSELs
Abstract
1. Introduction
2. Methodology
3. Analyzed Structure
4. Impact of an Oxide Island on Current Flow
5. Lasing Conditions for Optical Modes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jung, C.; Jäger, R.; Grabherr, M.; Schnitzer, P.; Michalzik, R.; Weigl, B.; Müller, S.; Ebeling, K. 4.8 mW Singlemode Oxide Confined Top-Surface Emitting Vertical-Cavity Laser Diodes. Electron. Lett. 1997, 33, 1790. [Google Scholar] [CrossRef]
- Grabherr, M.; Jager, R.; Michalzik, R.; Weigl, B.; Reiner, G.; Ebeling, K. Efficient Single-Mode Oxide-Confined GaAs VCSEL’s Emitting in the 850-Nm Wavelength Regime. IEEE Photon. Technol. Lett. 1997, 9, 1304–1306. [Google Scholar] [CrossRef]
- Ueki, N.; Sakamoto, A.; Nakamura, T.; Nakayama, H.; Sakurai, J.; Otoma, H.; Miyamoto, Y.; Yoshikawa, M.; Fuse, M. Single-Transverse-Mode 3.4-mW Emission of Oxide-Confined 780-Nm VCSELs. IEEE Photon. Technol. Lett. 1999, 11, 1539–1541. [Google Scholar] [CrossRef]
- Shchukin, V.; Ledentsov, N.N.; Kropp, J.; Steinle, G.; Ledentsov, N.; Burger, S.; Schmidt, F. Single-Mode Vertical Cavity Surface Emitting Laser via Oxide-Aperture-Engineering of Leakage of High-Order Transverse Modes. IEEE J. Quantum Electron. 2014, 50, 990–995. [Google Scholar] [CrossRef]
- Stepniak, G.; Lewandowski, A.; Kropp, J.; Ledentsov, N.; Shchukin, V.; Ledentsov, N.; Schaefer, G.; Agustin, M.; Turkiewicz, J. 54 Gbit/s OOK Transmission Using Single-Mode VCSEL up to 2.2 Km MMF. Electron. Lett. 2016, 52, 633–635. [Google Scholar] [CrossRef]
- Puerta, R.; Agustin, M.; Chorchos, Ł.; Toński, J.; Kropp, J.R.; Ledentsov, N.; Shchukin, V.A.; Ledentsov, N.N.; Henker, R.; Monroy, I.T.; et al. 107.5 Gb/s 850 Nm Multi- and Single-Mode VCSEL Transmission over 10 and 100 m of Multi-Mode Fiber. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–22 March 2016; pp. 1–3. [Google Scholar]
- Kao, H.Y.; Tsai, C.T.; Chi, Y.C.; Peng, C.Y.; Leong, S.F.; Wang, H.Y.; Cheng, C.H.; Wu, W.L.; Kuo, H.C.; Cheng, W.H.; et al. Long-Term Thermal Stability of Single-Mode VCSEL Under 96-Gbit/s OFDM Transmission. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- Guan, B.; Li, P.; Arafin, S.; Alaskar, Y.; Wang, K.L. Investigation of Single-Mode Vertical-Cavity Surface-Emitting Lasers with Graphene-Bubble Dielectric DBR. Photonics Nanostructures Fundam. Appl. 2018, 28, 56–60. [Google Scholar] [CrossRef]
- Ledentsov, N.; Turkiewicz, J.P.; Chorchos, Ł.; Ledentsov, N.N.; Agustin, M. Leaky Cavity 850 Nm Single-Mode VCSELs for High-Speed Data Transmission over Multi-Mode Fiber. In Proceedings of the 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 19–21 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Haglund, Å.; Gustavsson, J.S.; Vukušić, J.; Modh, P.; Larsson, A. Single Fundamental-Mode Output Power Exceeding 6 mW From VCSELs With a Shallow Surface Relief. IEEE Photonics Technol. Lett. 2004, 16, 368–370. [Google Scholar] [CrossRef]
- Shi, J.W.; Wei, Z.R.; Chi, K.L.; Jiang, J.W.; Wun, J.M.; Lu, I.C.; Chen, J.; Yang, Y.J. Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 Nm for Short to Medium Reach (2 Km) Optical Interconnects. J. Light. Technol. 2013, 31, 4037–4044. [Google Scholar] [CrossRef]
- Khan, Z.; Shih, J.C.; Cheng, C.L.; Shi, J.W. High-Power and Highly Single-Mode Zn-Diffusion VCSELs at 940 Nm Wavelength. In Proceedings of the 2019 IEEE Photonics Conference (IPC), San Antonio, TX, USA, 29 September–3 October 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Bao, L.; Kim, N.H.; Mawst, L.J.; Elkin, N.N.; Troshchieva, V.N.; Vysotsky, D.V.; Napartovich, A.P. Single-Mode Emission From Vertical-Cavity Surface-Emitting Lasers With Low-Index Defects. IEEE Photon. Technol. Lett. 2007, 19, 239–241. [Google Scholar] [CrossRef]
- Dems, M.; Beling, P.; Gębski, M.; Piskorski, Ł.; Walczak, J.; Kuc, M.; Frasunkiewicz, L.; Michał, W.; Sarzała, R.; Czyszanowski, T. VCSEL Modeling with Self-Consistent Models: From Simple Approximations to Comprehensive Numerical Analysis. Proc. SPIE 2015, 9381, 93810K. [Google Scholar] [CrossRef]
- Haglund, E.; Jahed, M.; Gustavsson, J.S.; Larsson, A.; Goyvaerts, J.; Baets, R.; Roelkens, G.; Rensing, M.; O’Brien, P. High-Power Single Transverse and Polarization Mode VCSEL for Silicon Photonics Integration. Opt. Express 2019, 27, 18892–18899. [Google Scholar] [CrossRef] [PubMed]
- Kokubun, Y.; Baba, T.; Sakaki, T.; Iga, K. Low-Loss Antiresonant Reflecting Optical Waveguide on Si Substrate in Visible-Wavelength Region. Electron. Lett. 1986, 22, 892–893. [Google Scholar] [CrossRef]
- Koch, T.; Koren, U.; Boyd, G.; Corvini, P.; Duguay, M. Antiresonant Reflecting Optical Waveguides for III-V Integrated Optics. Electron. Lett. 1987, 23, 244–245. [Google Scholar] [CrossRef]
- Yin, D.; Schmidt, H.; Barber, J.P.; Hawkins, A.R. Integrated ARROW Waveguides with Hollow Cores. Opt. Express 2004, 12, 2710–2715. [Google Scholar] [CrossRef] [PubMed]
- Ledentsov, N.N.; Shchukin, V.A.; Kalosha, V.P.; Ledentsov, N.N.; Kropp, J.R.; Agustin, M.; Chorchos, Ł.; Stępniak, G.; Turkiewicz, J.P.; Shi, J.W. Anti-Waveguiding Vertical-Cavity Surface-Emitting Laser at 850 Nm: From Concept to Advances in High-Speed Data Transmission. Opt. Express 2018, 26, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, G.; Nabiev, R.; Choquette, K.; Caneau, C.; Chang-Hasnain, C. Single-Mode, Passive Antiguide Vertical Cavity Surface Emitting Laser. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 629–637. [Google Scholar] [CrossRef]
- Goltser, I.V.; Mawst, L.J.; Botez, D. Single-Cladding Antiresonant Reflecting Optical Waveguide-Type Diode Laser. Opt. Lett. OL 1995, 20, 2219–2221. [Google Scholar] [CrossRef]
- Zhou, D.; Mawst, L.J. High-Power Single-Mode Antiresonant Reflecting Optical Waveguide-Type Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 2002, 38, 1599–1606. [Google Scholar] [CrossRef]
- Tee, C.W.; Yu, S.F. Design and Analysis of Cylindrical Antiresonant Reflecting Optical Waveguide. J. Light. Technol. 2003, 21, 3379–3386. [Google Scholar] [CrossRef]
- Tee, C.; Tan, C.; Yu, S. Design of Antiresonant-Reflecting Optical Waveguide-Type Vertical-Cavity Surface-Emitting Lasers Using Transfer Matrix Method. IEEE Photonics Technol. Lett. 2003, 15, 1231–1233. [Google Scholar] [CrossRef]
- Tee, C.; Yu, S.; Chen, N. Transverse-Leaky-Mode Characteristics of ARROW VCSELs. J. Light. Technol. 2004, 22, 1797–1804. [Google Scholar] [CrossRef]
- Tee, C.W.; Yu, S.F.; Penty, R.V.; White, I.H. Transient Response of ARROW VCSELs. IEEE J. Quantum Electron. 2005, 41, 140–147. [Google Scholar] [CrossRef]
- Więckowska, M.; Czyszanowski, T.; Almuneau, G.; Dems, M. Shaping Vertical-Cavity Surface-Emitting Laser Mode Profiles with an Antiresonant Oxide Island for Improved Single-Mode Emission. J. Opt. Soc. Am. B 2018, 35, 2259. [Google Scholar] [CrossRef]
- Amat, C.; Almuneau, G.; Gallo, P.; Jalabert, L.; Moumdji, S.; Dubreuil, P.; Camps, T.; Doucet, J.B.; Havard, E.; Bardinal, V.; et al. Free Engineering of Buried Oxide Patterns in GaAs/AlAs Epitaxial Structures. Electron. Lett. 2007, 43, 730–732. [Google Scholar] [CrossRef]
- Chouchane, F.; Doucet, J.B.; Arnoult, A.; Lacoste, G.; Fontaine, C.; Almuneau, G. A New Approach of Planar Oxidation of Buried Al xGa 1-xAs/GaAs Epitaxial Structures for Optical and Electrical Confinement Applications. Phys. Status Solidi Curr. Top. Solid State Phys. 2012, 9, 338–341. [Google Scholar] [CrossRef]
- Sarzała, R.; Czyszanowski, T.; Wasiak, M.; Dems, M.; Piskorski, L.; Nakwaski, W.; Panajotov, K. Numerical Self-Consistent Analysis of VCSELs. Adv. Opt. Technol. 2012, 689519. [Google Scholar] [CrossRef]
- Zeghuzi, A.; Wenzel, H.; Wünsche, H.J.; Radziunas, M.; Bandelow, U.; Knigge, A. Modeling of Current Spreading in High-Power Broad-Area Lasers and Its Impact on the Lateral Far Field Divergence. In Physics and Simulation of Optoelectronic Devices XXVI; Osiński, M., Arakawa, Y., Witzigmann, B., Eds.; SPIE: San Francisco, CA, USA, 2018; p. 52. [Google Scholar] [CrossRef]
- Radziunas, M.; Fuhrmann, J.; Zeghuzi, A.; Wünsche, H.J.; Koprucki, T.; Brée, C.; Wenzel, H.; Bandelow, U. Efficient Coupling of Dynamic Electro-Optical and Heat-Transport Models for High-Power Broad-Area Semiconductor Lasers. Opt. Quant. Electron. 2019, 51, 69. [Google Scholar] [CrossRef]
- Piskorski, Ł.; Sarzała, R.P.; Nakwaski, W. Self-Consistent Model of 650 Nm GaInP/AlGaInP Quantum-Well Vertical-Cavity Surface-Emitting Diode Lasers. Semicond. Sci. Technol. 2007, 22, 593–600. [Google Scholar] [CrossRef]
- Dems, M.; Kotynski, R.; Panajotov, K. Plane Wave Admittance Method—A Novel Approach for Determining the Electromagnetic Modes in Photonic Structures. Opt. Express 2005, 13, 3196. [Google Scholar] [CrossRef]
- Wenzel, H.; Wünsche, H.J. The Effective Frequency Method in the Analysis of Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 1997, 33, 1156–1162. [Google Scholar] [CrossRef]
- Li, T.; Hao, E.J. High Performance 850nm VCSELs with Surface Relief. In Proceedings of the 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser TechnologyOptoelectronics Technology (ASOT), Harbin, China, 9–12 August 2010; pp. 103–105. [Google Scholar] [CrossRef]
- Moser, P. Energy-Efficient VCSELs for Optical Interconnects; Springer Theses; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Calvez, S.; Calmon, P.F.; Arnoult, A.; Gauthier-Lafaye, O.; Fontaine, C.; Almuneau, G. Low-Loss Buried AlGaAs/AlOx Waveguides Using a Quasi-Planar Process. Opt. Express 2017, 25, 19275. [Google Scholar] [CrossRef] [PubMed]
- Suarez, I.; Condé, M.; Bouscayrol, L.; Fontaine, C.; Almuneau, G. Structure-Induced Effects on the Selective Wet Thermal Oxidation of Digital Alx Ga1–x As Alloy. J. Mater. Res. 2008, 23, 3006–3012. [Google Scholar] [CrossRef]
- Czyszanowski, T.; Dems, M.; Sarzała, R.P.; Nakwaski, W.; Panajotov, K. Precise Lateral Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 2011, 47, 1291–1296. [Google Scholar] [CrossRef]
- Czyszanowski, T.; Sarzała, R.P.; Dems, M.; Walczak, J.; Wasiak, M.; Nakwaski, W.; Iakovlev, V.; Volet, N.; Kapon, E. Spatial-Mode Discrimination in Guided and Antiguided Arrays of Long-Wavelength VCSELs. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1702010. [Google Scholar] [CrossRef][Green Version]
- Czyszanowski, T.; Volet, N.; Walczak, J.; Dems, M.; Sarzala, R.P.; Iakovlev, V.; Sirbu, A.; Mereuta, A.; Caliman, A.; Kapon, E. Numerical Analysis of Mode Discrimination by Intracavity Patterning in Long-Wavelength Wafer-Fused Vertical-Cavity Surface-Emitting Lasers. IEEE J. Quantum Electron. 2014, 50, 732–740. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Więckowska, M.; Sarzała, R.P.; Ledzion, R.; Dems, M. Impact of an Antiresonant Oxide Island on the Lasing of Lateral Modes in VCSELs. Materials 2020, 13, 2195. https://doi.org/10.3390/ma13092195
Więckowska M, Sarzała RP, Ledzion R, Dems M. Impact of an Antiresonant Oxide Island on the Lasing of Lateral Modes in VCSELs. Materials. 2020; 13(9):2195. https://doi.org/10.3390/ma13092195
Chicago/Turabian StyleWięckowska, Marta, Robert P. Sarzała, Rafał Ledzion, and Maciej Dems. 2020. "Impact of an Antiresonant Oxide Island on the Lasing of Lateral Modes in VCSELs" Materials 13, no. 9: 2195. https://doi.org/10.3390/ma13092195
APA StyleWięckowska, M., Sarzała, R. P., Ledzion, R., & Dems, M. (2020). Impact of an Antiresonant Oxide Island on the Lasing of Lateral Modes in VCSELs. Materials, 13(9), 2195. https://doi.org/10.3390/ma13092195