Rotary Friction Welding of Molybdenum without Upset Forging
Abstract
1. Introduction
2. Test Materials and Methods
3. Results and Discussion
3.1. Excessive and Abrupt Burning and Instability of Flashes during Welding
3.2. Effects of Welding Time on Macro-Morphology and Axial Shortening of the RFW-Mo Joints
3.3. Influences of Welding Time on Structural Morphologies of Cross-Sections of the RFW-Mo Joints
3.4. Impacts of Welding Time on Microhardness of Cross-Sections of the Mo-RFW Joints
3.5. Effects of Welding Time on Mechanical Properties of the Mo-RFW Joints
3.6. Influences of Welding Time on Micro-Morphologies of Tensile Fractures of the RFW-Mo Joints
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, L.J.; Pei, J.Y.; Zhang, L.L.; Long, J.; Zhang, J.X.; Na, S.J. Laser seal welding of end plug to thin-walled nanostructured high-strength molybdenum alloy cladding with a zirconium interlayer. J. Mater. Process. Technol. 2019, 267, 338–347. [Google Scholar] [CrossRef]
- Zhang, L.J.; Liu, J.Z.; Bai, Q.L.; Wang, X.W.; Sun, Y.J.; Li, S.G.; Gong, X. Effect of preheating on the microstructure and properties of fiber laser welded girth joint of thin-walled nanostructured Mo alloy. Int. J. Refract. Met. Hard Mater. 2019, 78, 219–227. [Google Scholar] [CrossRef]
- Zhang, L.J.; Liu, J.Z.; Pei, J.Y.; Ning, J.; Zhang, L.L.; Long, J.; Na, S.J. Effects of power modulation, multipass remelting and Zr addition upon porosity defects in laser seal welding of end plug to thin-walled molybdenum alloy. J. Manuf. Process. 2019, 41, 197–207. [Google Scholar] [CrossRef]
- Northwood, D.O.; Herring, R.A. Irradiation growth of zirconium alloy nuclear reactor structural components. J. Mater. Energy Syst. 1983, 4, 195–216. [Google Scholar] [CrossRef]
- Nikulina, A.V.; Konkov, V.F.; Peregud, M.M.; Vorobev, E.E. Effect of molybdenum on properties of zirconium components of nuclear reactor core. Nucl. Mater. Energy 2018, 14, 8–13. [Google Scholar] [CrossRef]
- Doane, D.V.; Timmons, G.A.; Hallada, C.J. Molybdenum and Molybdenum Alloys. Kirk Othmer Encycl. Chem. Technol. 2000. [Google Scholar] [CrossRef]
- An, G.; Sun, J.; Sun, Y.; Cao, W.; Zhu, Q.; Bai, Q.; Zhang, L. Fiber laser welding of fuel cladding and end plug made of La2O3 dispersion-strengthened molybdenum alloy. Materials 2018, 11, 1071. [Google Scholar] [CrossRef]
- Xie, M.X.; Li, Y.X.; Shang, X.T.; Wang, X.W.; Pei, J.Y. Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy. Metals 2019, 9, 640. [Google Scholar] [CrossRef]
- Xie, M.X.; Li, Y.X.; Shang, X.T.; Wang, X.W.; Pei, J.Y. Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy. Materials 2019, 12, 1433. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, L.J.; Long, J.; Sun, X.; Zhang, J.X.; Na, S.J. Enhanced mechanical performance of fusion zone in laser beam welding joint of molybdenum alloy due to solid carburizing. Mater. Des. 2019, 181, 107957. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, L.J.; Long, J.; Ning, J.; Zhang, J.X.; Na, S.J. Effects of titanium on grain boundary strength in molybdenum laser weld bead and formation and strengthening mechanisms of brazing layer. Mater. Des. 2019, 169, 107681. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Onchi, T. Creep deformation and rupture properties of unirradiated Zircaloy-4 nuclear fuel cladding tube at temperatures of 727 to 857 K. J. Nucl. Mater. 1990, 175, 135–142. [Google Scholar] [CrossRef]
- Mayuzumi, M.; Onchi, T. Creep deformation of an unirradiated Zircaloy nuclear fuel cladding tube under dry storage conditions. J. Nucl. Mater. 1990, 171, 381–388. [Google Scholar] [CrossRef]
- Sokolov, M.; Salminen, A.; Katayama, S.; Kawahito, Y. Reduced pressure laser welding of thick section structural steel. J. Mater. Process. Technol. 2015, 219, 278–285. [Google Scholar] [CrossRef]
- Zhang, L.J.; Guo, Q.; Zhang, Y.B.; Ma, R.Y.; Wang, C.H.; Zhang, J.X.; Na, S.J. Microstructure and Performance of Laser-Welded GH3128/Mo Dissimilar Joints. J. Mater. Eng. Perform. 2020, 29, 1792–1809. [Google Scholar] [CrossRef]
- Liu, P.; Feng, K.Y.; Zhang, G.M. A novel study on laser lap welding of refractory alloy 50Mo–50Re of small-scale thin sheet. Vacuum 2017, 136, 10–13. [Google Scholar] [CrossRef]
- Gao, X.L.; Li, L.K.; Liu, J.; Wang, X.; Yu, H. Effect of laser offset on microstructure and mechanical properties of laser welding of pure molybdenum to stainless steel. Int. J. Refract. Met. Hard Mater. 2020, 88, 105186. [Google Scholar] [CrossRef]
- Katayama, S.; Yohei, A.; Mizutani, M.; Kawahito, Y. Development of deep penetration welding technology with high brightness laser under vacuum. Phys. Procedia 2011, 12, 75–80. [Google Scholar] [CrossRef]
- Long, J.; Zhang, L.J.; Zhang, L.L.; Ning, J.; Yin, X.Q.; Zhang, J.X.; Na, S.J. Fiber laser spot welding of molybdenum alloy in a hyperbaric environment. Opt. Express 2020, 28, 7843–7857. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Liao, Z.; Jin, F.; Xiong, J.; Zhang, F. Effect of rotation speed on friction behavior and radially non-uniform local mechanical properties of AA6061-T6 rotary friction welded joint. J. Adhes. Sci. Technol. 2018, 32, 1987–2006. [Google Scholar] [CrossRef]
- Jin, F.; Li, J.; Liao, Z.; Li, X.; Xiong, J.; Zhang, F. The corona bond response to normal stress distribution during the process of rotary friction welding. Weld. World 2018, 62, 913–922. [Google Scholar] [CrossRef]
- Ambroziak, A. Friction welding of molybdenum to molybdenum and to other metals. Int. J. Refract. Met. Hard Mater. 2011, 29, 462–469. [Google Scholar] [CrossRef]
- Tabernig, B.; Reheis, N. Joining of molybdenum and its application. Int. J. Refract. Met. Hard Mater. 2010, 28, 728–733. [Google Scholar] [CrossRef]
- Stütz, M.; Pixner, F.; Wagner, J.; Reheis, N.; Raiser, E.; Kestler, H.; Enzinger, N. Rotary friction welding of molybdenum components. Int. J. Refract. Met. Hard Mater. 2018, 73, 79–84. [Google Scholar] [CrossRef]
- Stütz, M.; Buzolin, R.; Pixner, F.; Poletti, C.; Enzinger, N. Microstructure development of molybdenum during rotary friction welding. Mater. Charact. 2019, 151, 506–518. [Google Scholar] [CrossRef]
- ASTM E112-13: Standard Test Methods for Determining Average Grain Size; ASTM: West Conshohocken, PA, USA, 2013.
- Primig, S.; Leitner, H.; Knabl, W.; Lorich, A.; Clemens, H.; Stickler, R. Influence of the heating rate on the recrystallization behavior of molybdenum. Mater. Sci. Eng. A 2012, 535, 316–324. [Google Scholar] [CrossRef]
- Yuanzhao, L.V.; Li, J.; Li, P.; Sun, T.; Xiong, J.; Zhang, F.S. Joint Formation Mechanism of Rotary Friction Welding Characterized by Seaming Ratio. Chin. J. Mater. Res. 2017, 31, 261–266. [Google Scholar]
No. | Main Component | Impurity Content (≤) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mo | Al | Ca | Fe | Mg | Ni | Si | C | N | O | |
Mo1 | ≥99.95 | 0.002 | 0.002 | 0.010 | 0.002 | 0.005 | 0.010 | 0.010 | 0.003 | 0.008 |
NO. | Spindle Speed (r/min) | Welding Pressure (MPa) | Welding Time (s) |
---|---|---|---|
1 | 2000 | 80 | 2 |
2 | 2000 | 80 | 3 |
3 | 2000 | 80 | 4 |
4 | 2000 | 80 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Shang, X.; Li, Y.; Zhang, Z.; Zhu, M.; Xiong, J. Rotary Friction Welding of Molybdenum without Upset Forging. Materials 2020, 13, 1957. https://doi.org/10.3390/ma13081957
Xie M, Shang X, Li Y, Zhang Z, Zhu M, Xiong J. Rotary Friction Welding of Molybdenum without Upset Forging. Materials. 2020; 13(8):1957. https://doi.org/10.3390/ma13081957
Chicago/Turabian StyleXie, Miaoxia, Xiangtao Shang, Yanxin Li, Zehui Zhang, Minghui Zhu, and Jiangtao Xiong. 2020. "Rotary Friction Welding of Molybdenum without Upset Forging" Materials 13, no. 8: 1957. https://doi.org/10.3390/ma13081957
APA StyleXie, M., Shang, X., Li, Y., Zhang, Z., Zhu, M., & Xiong, J. (2020). Rotary Friction Welding of Molybdenum without Upset Forging. Materials, 13(8), 1957. https://doi.org/10.3390/ma13081957