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Abstract: We report the negative effective mass (density) metamaterials based on the
electro-mechanical coupling exploiting plasma oscillations of a free electron gas. The negative
mass appears as a result of the vibration of a metallic particle with a frequency of ω, which is close the
frequency of the plasma oscillations of the electron gas m2 relative to the ionic lattice m1. The plasma
oscillations are represented with the elastic spring k2 = ω2

pm2, where ωp is the plasma frequency.
Thus, the metallic particle vibrated with the external frequency ω is described by the effective mass

me f f = m1 +
m2ω

2
p

ω2
p−ω

2 , which is negative when the frequency ω approaches ωp from above. The idea is

exemplified with two conducting metals, namely Au and Li.
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1. Introduction

Metamaterials are recently developed artificial materials demonstrating properties that are not
found in naturally occurring materials [1,2]. The domain of metamaterials covers a broad diversity
of fields in physics and engineering: electromagnetics, acoustics, mechanics and thermodynamics.
In metamaterials, both electric permittivity and magnetic permeability may be negative at certain
frequencies [1–3]. Moreover, they may be tuned in a broad range of values [4]. The electromagnetic
metamaterials are usually synthesized by embedding various constituents/inclusions with novel
geometrical shapes and forms in some host media [2]. Various types of electromagnetic composite
media, such as double-negative materials, chiral materials and omega media have been studied by
various research groups worldwide [1–4].

A relatively new kind of metamaterials are acoustic metamaterials [5–10]. Acoustic metamaterial,
in which both the effective density and bulk modulus are simultaneously negative, in the true and
strict sense of an effective medium have been reported [5]. Acoustic metamaterials demonstrating the
negative Poisson’s ratio have been discussed [10]. Acoustic metamaterials demonstrate a potential
to be perfect absorbers of mechanical vibrations [11] and also as materials enabling the focusing
of ultrasound [7]. The present paper introduces the negative effective mass metamaterials based
on mechano-electromagnetic coupling. The idea of the negative effective mass (density) acoustic
metamaterials was demonstrated and discussed in [12,13]. We propose to exploit the plasma
oscillations of the electron gas [14] in the development of metamaterials with the negative effective
mass (density) [13,15]. The applications of the negative mass (density) materials include: acoustic
tunneling through narrow channels, control of the radiation field, perfect transmission through sharp
corners and power splitting as discussed in [16]. Elastic wave control and seismic wave protection
with acoustic metamaterials possessing the negative mass (density) is considered in [17].

2. Results and Discussion

2.1. Negative Effective Mass and Plasma Oscillations in Metals

The mechanical model, giving rise to the negative effective mass effect, is depicted in Figure 1A.
The core with mass m2 is connected internally through the spring with constant k2 to a shell with mass
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m1. The system is subjected to the external sinusoidal force (t) = F̂sinωt. If we solve the equations
of motion for the masses m1 and m2 and replace the entire system with a single effective mass me f f ,
we obtain [12,13,15]:

me f f = m1 +
m2ω2

0

ω2
0 −ω

2
(1)

where ω0 =
√

k2
m2

. Clearly, when the frequency ω approaches ω0 from above the effective mass me f f
will be negative [12,13,15]. Now consider the electro-mechanical analogy of the aforementioned
model, giving rise to the negative effective mass. Consider a cubic metal particle, seen as ionic lattice
m1. containing the Drude-Lorenz free electrons gas possessing a total mass of m2 = menV, where
me = 9.1× 10−31 kg is the mass of electron, n is the concentration (number density) of the electron gas
and V is the volume of the particle [14,18,19]. Electron gas is free to oscillate with the plasma frequency

ωp =
√

ne2

meε0
[14,15].
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Figure 1. (A) Core with mass m2 is connected internally through the spring with k2 to a shell with
mass m1. The system is subjected to the sinusoidal force F(t) = F̂sinωt. (B) Free electrons gas m2

is embedded into the ionic lattice m1; ωp is the plasma frequency (the left sketch). The equivalent
mechanical scheme of the system (right sketch).

We exposed the entire metal particle to the external sinusoidal force F(t) = F̂sinωt. The effective
mechanical scheme of the metallic particle is shown in Figure 1B (the right sketch) and it coincides
exactly, giving rise to the negative effective mass, supplied in this case by:

me f f = m1 +
m2ω2

p

ω2
p −ω2

(2)

where m1 is the mass of the ionic lattice, m2 is the total mass of the electronic gas and k2 = ω2
pm2; it is

seen that it may be negative when the frequency ω approaches ωp from above. The negativity of the
effective mass appears as a result of the attempt to use a single mass me f f to represent a two mass
system comprising masses m1, m2, as noted in [13]. Considering m2

m1
� 1 yields:

me f f

m1 + m2
�

me f f

m1
� 1 +

m2

m1

ω2
p

ω2
p −ω2

(3)
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It is clear from Equation (3) that the effective dimensionless mass
me f f

m1+m2
�

me f f
m1

depends only
on the ratio m2

m1
; thus, it is independent on the metallic particle size. Thus, for the purposes of

calculation, m2 is taken as the mass of electron me, and m1 is the mass of the atom of metal (see Table 1).
The dependence of the dimensionless effective mass me f f /(m1 + m2) on the dimensionless frequency
ω/ωp for two model metals Li and Au is plotted in Figure 2 (the data relevant to these metals is
supplied in Table 1). The macro-scale values of the “plasma spring” constant k2 � 102 N

m are noteworthy.
The dependencies of the dimensionless effective mass me f f /(m1 + m2) on the dimensionless difference
ω−ωp
ωp

= ∆ω
ωp

calculated for Li and Au are presented in Figures 3 and 4.

Table 1. Material constants used in calculations.

Metal m1 (kg) m2 (kg) n (m−3) ωp (Hz) k2=ω2
pm2 (N/m)

Li 1.17 × 10−26 9.1 × 10−31 4.7 × 1028 1.0 × 1016 90.0

Au 3.27 × 10−25 9.1 × 10−31 5.9 × 1028 1.3 × 1016 152.1
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2.2. Negative Mass and Low Frequency Plasmons in 1D Metallic Meso-Structures

The plasma oscillations shown in Figure 1 demonstrate the negative mass in the vicinity of
the plasma frequency, which is on the order of magnitude of ωp � 1016 Hz , which is very high.
However, this frequency may be decreased very strongly for meso-structures built of thin metallic
wires, as demonstrated in [20]. Depression of the plasma frequency into the far infrared and even GHZ
band becomes possible due to the mutual inductance that appear in the periodic arrays built of thin
metallic wires [20]. We consider the 1D lattice built of the metallic wires with diameter 2r connected
with springs k1, as depicted in Figure 5. The effective (pseudo) density of electrons in the metamaterial
lattice shown in Figure 5 is given by [20]:

ñ � πn
r2

a2 (4)

where n is the concentration of the free electron gas supplied in Table 1 for Li and Au.
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between wires is a.

The pseudo-mass of electrons in such matrices is given by [18]:

m̃ =
µ0r2e2n

2
ln

a
r

(5)

where n is the concentration of the free electron gas supplied in Table 1. The value expressed by
Equation (5) is called in [20] as the “effective mass”; however, in our paper the notion of the “effective
mass” is already ascribed to the mass of the vibrated element, given by Equation (1). Thus, we call the
value expressed by Equation (5) the “pseudo-mass”, and the effective density of electrons expressed
by Equation (4) we label as the “pseudo-density”. Assuming r = 1.0× 10−6 m; a = 5.0× 10−3 m we
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estimate m̃Li � 6.4 × 10−27 kg; m̃Au � 8.1 × 10−27 kg. Equations (4) and (5) enable calculation of the
effective pseudo-plasma frequencies ω∗p for Au and Li according to Equation (6):

ω∗p =

√
ñe2

ε0m̃
(6)

Substituting the aforementioned numerical parameters yields effective plasma frequencies of the
lattices built from Au and Li wires ω∗Au

p = 4.6× 1010 Hz; ω∗Li
p = 5.2× 1010 Hz, which are much smaller

that the aforementioned values of the “true” plasma frequencies.
The spring constants k2 corresponding to aforementioned plasma frequencies are already small

and equal k2(Li) = 2.4 × 10−9 N/m, k2(Au) = 1.9 × 10−9 N/m. The optical and acoustical branches
of the longitudinal modes propagation in the 1D lattice, depicted in Figure 5, should be elucidated.
It should be emphasized that the ensembles of metallic wires, shown schematically in Figure 5, will not
demonstrate simultaneously the negative mass (density) and the negative refraction effects [20,21].
This is due to the fact that the negative refraction becomes possible below the plasma frequency
ωp [20,21]; contrastingly, the effect of the negative mass in our model emerges when the frequency
ω approaches ωp from above; thus, the creation of material demonstrating the negative density and
dielectric constant simultaneously remains challenging. A more comprehensive approach should
consider inevitable losses resulting in the decay of plasmons [22], consequently influencing the effect
of the negative mass considerably, as discussed in [23].

3. Conclusions

We conclude that exploiting the plasma oscillations of the electron gas relative to the ion lattice
gives rise to the negative effective mass phenomenon. The effect takes place when a metallic particle is

vibrated with the external frequency ω approaching the plasma frequency ωp =
√

ne2

meε0
from above.

In this case, the effective mass of the particle me f f = m1 +
m2ω

2
p

ω2
p−ω

2 , where m1 is the mass of the ionic

lattice, and m2 is the mass of the electron gas, becomes negative [12,13,15].
The plasma oscillations may be phenomenologically represented with the ideal spring k2 = ω2

pm2.
Macro-scaled values of k2 � 102 N

m for typical metals (namely Li and Au) are noteworthy. The effects,
due to the negative effective mass, become possible in the nearest vicinity of the plasma frequencies,
inherent for typical metals which are high, namely ωp ∼ 1016 Hz. The dimensionless effective mass

of the particle
me f f

m1+m2
�

me f f
m1
� 1 + m2

m1

ω2
p

ω2
p−ω

2 does not depend on the size of the metallic particle.

The plasma frequency may be decreased markedly for the low frequency plasmons predicted for the
metallic meso-structures [20], enabling manufacturing metamaterials, which demonstrate the effective
negative density. Negative density metamaterials demonstrate the potential of acoustic tunneling
through narrow channels, perfect power transmission through sharp corners, elastic power splitting
and seismic wave protection [16,17].
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