In-Situ SEM Observation on Fracture Behavior of Titanium Alloys with Different Slow-Diffusing β Stabilizing Elements
Abstract
:1. Introduction
2. Materials and Experimental
3. Results
3.1. Initial Microstructures
3.2. In-Situ Observation
3.3. DAP Analysis
3.4. Mechanical Properties
4. Discussion
4.1. Effect of Slow-Diffusing β Stabilizing Elements on Nucleation of Microvoids
4.1.1. Microvoid Initiates near the Triple Point of 2d Interface
4.1.2. Interfacial Microvoid Caused by Intergranular Dislocation Slip
4.2. The Effect of Slow-Diffusing β Stabilizing Elements on the Growth of Microvoids
5. Conclusions
- (1)
- Microvoids mainly initiate at α/β interfaces, and the investigated alloys present microvoid coalescence intergranular fracture characteristics.
- (2)
- With the contents of Mo and W increasing, the β phase content increases and the grain size decreases, which leads to the difficulty of microvoid nucleation at the interface and enhances the ultimate tensile strength.
- (3)
- The segregation of Mo and W near the α/β interface can reduce the diffusion ability of the interface and inhibit the growth of microvoids along the interface, which is helpful to improve the plasticity. The microvoids grow into circular shapes in the HBA specimen with more slow-diffusing β stabilizing elements, and spindle shapes in the LBA specimen with less slow-diffusing β stabilizing elements.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Narayana, P.L.; Kim, S.W.; Hong, J.K.; Reddy, N.S.; Yeom, J.T. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650 °C. Mater. Sci. Eng. A 2018, 718, 287–291. [Google Scholar] [CrossRef]
- Guo, R.; Liu, B.; Xu, R.J.; Cao, Y.K.; Qiu, J.W.; Chen, F.; Yan, Z.Q.; Liu, Y. Microstructure and mechanical properties of powder metallurgy high temperature titanium alloy with high Si content. Mater. Sci. Eng. A 2020, in press. [Google Scholar] [CrossRef]
- Chandravanshi, V.K.; Bhattacharjee, A.; Kamat, S.V.; Nandy, T.K. Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti-1100-0.1B alloy. J. Alloy. Compd. 2014, 589, 336–345. [Google Scholar] [CrossRef]
- Wang, S.Q.; Li, W.Y.; Zhou, Y.; Li, X.; Chen, D.L. Tensile and fatigue behavior of electron beam welded dissimilar joints of Ti–6Al–4V and IMI834 titanium alloys. Mater. Sci. Eng. A 2016, 649, 146–152. [Google Scholar] [CrossRef]
- Ding, C.; Shi, Q.; Liu, X.; Zheng, L.; Li, R.X.; Huang, Z.X.; Yu, B.Y.; Wei, W. Microstructure and mechanical properties of PM Ti600 alloy after hot extrusion and subsequent annealing treatment. Mater. Sci. Eng. A 2019, 748, 434–440. [Google Scholar] [CrossRef]
- Gogia, A.K. High-temperature titanium alloys. Defence. Sci. J. 2005, 55, 149–173. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J. The effects of Mo content on microstructure and high temperature tensile behavior of Ti-6.5Al-2Sn-4Zr-xMo-2Nb-1W-0.2Si titanium alloys. Mater. High Temp. 2017, 34, 179–185. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J.; Wang, Y.L.; Wang, X.X. Effect of single annealing on the microstructure and mechanical properties of BTi-6431S titanium alloy. Chin. J. Nonferrous Met. 2013, 23, 1530–1536. [Google Scholar]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J.; Wang, W.Q. Phase precipitation behavior and tensile property of a Ti–Al–Sn–Zr–Mo–Nb–W–Si titanium alloy. Rare Metals. 2018, 37, 1064–1069. [Google Scholar] [CrossRef]
- Yuan, Z.Z.; Dai, Q.X.; Cheng, X.N.; Chen, K.M.; Pan, L.; Wang, A.D. In situ SEM tensile test of high-nitrogen austenitic stainless steels. Mater. Charact. 2006, 56, 79–83. [Google Scholar] [CrossRef]
- Shao, H.; Zhao, Y.Q.; Ge, P.; Zeng, W.D. In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy. Mater. Sci. Eng. A 2013, 559, 515–519. [Google Scholar] [CrossRef]
- Omprakash, C.M.; Statyanarayana, D.V.V.; Kumar, V. Effect of microstructure on creep and creep crack growth behavior of titanium alloy. Trans. Indian Inst. Met. 2010, 63, 457–459. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J.; Wang, Y.L.; Wang, W.Q. Tensile behavior at 700 ℃ in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with a bi-modal microstructure. Mater. Sci. Eng. A 2014, 595, 159–164. [Google Scholar] [CrossRef]
- Raabe, D.; Herbig, M.; Sandlobes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.-P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 18, 253–261. [Google Scholar] [CrossRef]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J. In-situ SEM observations of fracture behavior of BT25y alloy during tensile process at different temperature. Mater. Design. 2017, 116, 638–643. [Google Scholar] [CrossRef]
- Neal, D.F. Titanium: Science and Technology; Lütjering, G., Zweicker, U., Bunk, W., Eds.; Deutsche Gesellschaft für Mrtallkunde eV: Oberursel, Germany, 1985; pp. 2419–2424. [Google Scholar]
- Wang, Z.H.; Xia, C.Q.; Peng, X.M.; Chen, Z.H.; Li, X.X. Effect of heat treatment on microstructure and mechanical properties of Ti62421s high temperature titanium alloy. Chin. J. Nonferrous Met. 2010, 20, 2298–2306. [Google Scholar]
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Kim, J.S.; Kim, J.H.; Lee, Y.T.; Park, C.G.; Lee, C.S. Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti-6Al-4V alloy. Mater. Sci. Eng. A 1999, 263, 272–280. [Google Scholar] [CrossRef]
- Wang, X.; Jahazi, M.; Yue, S. Substructure of high temperature compressed titanium alloy IMI 834. Mater. Sci. Eng. A 2006, 434, 188–193. [Google Scholar] [CrossRef]
- Ambard, A.; Guétaz, L.; Louchet, F.; Guichard, D. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K. Mater. Sci. Eng. A 2001, 319–321, 404–408. [Google Scholar] [CrossRef]
- Riedel, H. Fracture at High Temperature; Springer: Berlin, Germany, 1987. [Google Scholar]
- Dyson, B.F.; Rodgers, M.J. Intergranular creep fracture in Nimonic 80A under conditions of constant cavity density. Phys. Metall. Fract. 1977, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Hull, D.; Rimmer, D.E. The growth of grain-boundary voids under stress. Philos. Mag. 1959, 4, 673–687. [Google Scholar] [CrossRef]
Sample Name | Composition |
---|---|
HBA | Ti-6.5Al-2Sn-4Zr-4Mo-2Nb-1W-0.2Si |
LBA | Ti-6.5Al-2Sn-4Zr-1Mo-3Nb-0.5W-0.2Si |
Samples | αp/μm | βt/μm | αs/nm | β Phase Content/% |
---|---|---|---|---|
HBA | 2 | 3–6 | 100 | 19.3 |
LBA | 6 | 13–19 | 300 | 1.9 |
Samples | Tensile Strength/MPa | Elongation/% |
---|---|---|
HBA | 750 | 50.0 |
LBA | 655 | 26.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xie, H.; Hui, S.; Ye, W.; Yu, Y.; Song, X.; Peng, L.; Huang, G.; Yang, Z. In-Situ SEM Observation on Fracture Behavior of Titanium Alloys with Different Slow-Diffusing β Stabilizing Elements. Materials 2020, 13, 1848. https://doi.org/10.3390/ma13081848
Zhang W, Xie H, Hui S, Ye W, Yu Y, Song X, Peng L, Huang G, Yang Z. In-Situ SEM Observation on Fracture Behavior of Titanium Alloys with Different Slow-Diffusing β Stabilizing Elements. Materials. 2020; 13(8):1848. https://doi.org/10.3390/ma13081848
Chicago/Turabian StyleZhang, Wenjing, Haofeng Xie, Songxiao Hui, Wenjun Ye, Yang Yu, Xiaoyun Song, Lijun Peng, Guojie Huang, and Zhen Yang. 2020. "In-Situ SEM Observation on Fracture Behavior of Titanium Alloys with Different Slow-Diffusing β Stabilizing Elements" Materials 13, no. 8: 1848. https://doi.org/10.3390/ma13081848
APA StyleZhang, W., Xie, H., Hui, S., Ye, W., Yu, Y., Song, X., Peng, L., Huang, G., & Yang, Z. (2020). In-Situ SEM Observation on Fracture Behavior of Titanium Alloys with Different Slow-Diffusing β Stabilizing Elements. Materials, 13(8), 1848. https://doi.org/10.3390/ma13081848