Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Crystal Structures
3.2. Electronic Structures
3.3. Thermoelectric Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bhattacharyya, S.; Pandey, T.; Singh, A.K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology 2014, 25, 465701. [Google Scholar] [CrossRef]
- Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P.; Dudarev, S.L. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar]
- Chen, X.; Cui, T.; Niu, Y.L.; Wang, Y.C.; Wang, M.; Ma, Y.M.; Zou, G.T.; Wang, Y. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys. Rev. B 2007, 76, 155127. [Google Scholar]
- Côté, M.; Pesant, S. DFT +U study of magnetic order in doped La2CuO4 crystals. Phys. Rev. B 2011, 84, 085104. [Google Scholar]
- Ding, J.X.; Xu, B.; Lin, Y.H.; Nan, C.W.; Liu, W. Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New J. Phys. 2015, 17, 83012. [Google Scholar] [CrossRef]
- Dong, X.; Yu, H.L.; Li, W.; Pei, Y.Z.; Chen, Y. First-principles study on band structures and electrical transports of doped-SnTe. J. Mater. 2016, 2, 158–164. [Google Scholar] [CrossRef]
- Guo, S.D. Biaxial strain tuned thermoelectric properties in monolayer PtSe2. J. Mater. Chem. C 2016, 4, 9366–9374. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef]
- Shao, H.; Tan, X.; Liu, G.; Jiang, J.; Jiang, H. A first-principles study on the phonon transport in layered BiCuOSe. Sci. Rep. 2016, 6, 21035. [Google Scholar] [CrossRef]
- Togo, A.; Kaviany, M.; Tanaka, I.; Shim, J.H.; Ji, H.S. Low phonon conductivity of layered BiCuOS, BiCuOSe, and BiCuOTe from first principles. Phys. Rev. B 2016, 94, 115203. [Google Scholar]
- Hiramatsu, H.; Yanagi, H.; Kamiya, T.; Ueda, K.; Hirano, M.; Hosono, H. Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): Effects of electronic configurations of M 3+ ions. Chem. Mater. 2008, 20, 326–334. [Google Scholar] [CrossRef]
- Hu, Z.P.; Li, B.; Sun, X.Y.; Metiu, H. Chemistry of doped oxides: The activation of surface oxygen and the chemical compensation effect. J. Phys. Chem. C 2011, 115, 3065–3074. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.L.; Liu, Y.C.; Zhan, B.; Lin, Y.H.; Zhang, B.P.; Yuan, X.; Zhang, W.Q.; Xu, W.; Nan, C.W. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 2013, 25, 5086–5090. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.S.; Lu, Q.; Hu, C.; Chen, X.R.; Chen, Q.F. Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations. Appl. Phys. A 2018, 125, 33. [Google Scholar] [CrossRef]
- Li, F.; Li, J.F.; Zhao, L.D.; Xiang, K.; Liu, Y.; Zhang, B.P.; Lin, Y.H.; Nan, C.W.; Zhu, H.M. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci. 2012, 5, 7188–7195. [Google Scholar] [CrossRef]
- Li, J.; Ma, Z.J.; Wu, K.C. Thermoelectric enhancement in sliver tantalate via strain-induced band modification and chemical bond softening. RSC Adv. 2017, 7, 846–8466. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.H.; Pei, Y.L.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J.Q.; Zhao, L.D. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.H.; Pei, Y.L.; Meng, X.F.; Berardan, D.; Dragoe, N.; Cai, W.; Zhao, L.D. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J. Mater. Chem. A 2014, 2, 4903–4906. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, L.Q.; Li, J.Y. Precipitate morphologies of pseudobinary Sb2Te3-PbTe thermoelectric compounds. Acta Mater. 2014, 65, 308–315. [Google Scholar] [CrossRef]
- Madsen, G.K.H.; Singh, D.J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71. [Google Scholar] [CrossRef]
- Mazin, I.I.; Singh, D.J. Calculated thermoelectric properties of La-filled skutterudites. Phys. Rev. B 1997, 56, R1650–R1653. [Google Scholar]
- Pei, Y.Z.; Wang, H.; Snyder, G.J. Band engineering of thermoelectric materials. Adv. Mater. 2012, 24, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.L.; Ahuja, R.; Huang, L.M. Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys. Rev. B 2006, 74, 075206. [Google Scholar]
- Su, N.; Guo, S.; Li, F.; Liu, D.W.; Li, B. Electrodeposition of p-type Sb2Te3 films and micro-pillar arrays in a multi-channel glass template. Materials 2018, 11, 1194. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Zou, C.P.; Pan, K.; Zou, D.F.; Liu, Y.Y. Enhancing thermoelectric properties of BiCuSeO via uniaxial compressive strain: First-principles calculations. J. Alloy. Compd. 2018, 743, 610–617. [Google Scholar] [CrossRef]
- Tanusilp, S.; Kurosaki, K. Si-based materials for thermoelectric applications. Materials 2019, 12, 1943. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huang, H.; Zhong, J.; Yu, S.; Zhang, Q.B.; Zeng, X.C. Monolayer triphosphates MP3 (M = Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction. Nanoscale 2019, 11, 12210–12219. [Google Scholar] [CrossRef]
- Wu, H.H.; Meng, Q.Q.; Huang, H.; Liu, C.T.; Wang, X.L. Tuning the indirect–direct band gap transition in the MoS2-xSex armchair nanotube by diameter modulation. Phys. Chem. Chem. Phys. 2018, 20, 3608–3613. [Google Scholar] [CrossRef]
- Xie, G.F.; Ju, Z.F.; Zhou, K.K.; Wei, X.L.; Guo, Z.X.; Cai, Y.Q.; Zhang, G. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. Npj Comput. Mater. 2018, 4, 21. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.Y.; Yoon, J.; Wang, Y.Q.; Jain, M.; Feldmann, D.M.; Dowden, P.C.; MacManus-Driscoll, J.L.; Jia, Q. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 2009, 21, 3794–3798. [Google Scholar] [CrossRef]
- Yang, J.M.; Yang, G.; Zhang, G.B.; Wang, Y.X. Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: A first-principles study. J. Mater. Chem. A 2014, 2, 13923. [Google Scholar] [CrossRef]
- Yavorsky, B.Y.; Mertig, I.; Zahn, P.; Hinsche, N.F. Influence of strain on anisotropic thermoelectric transport in Bi2Te3 and Sb2Te3. Phys. Rev. B 2011, 84, 165214. [Google Scholar]
- Zavjalov, A.; Tikhonov, S.; Kosyanov, D. TiO2-SrTiO3 biphase nanoceramics as advanced thermoelectric materials. Materials 2019, 12, 5895. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Hu, X.Y.; Guo, P.; Wang, C.L. Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: A theoretical study. Phys. B 2012, 407, 1114–1118. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Zhao, L.D.; Berardan, D.; Pei, Y.L.; Byl, C.; Pinsard-Gaudart, L.; Dragoe, N. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett. 2010, 97, 092118. [Google Scholar] [CrossRef]
- Zou, D.F.; Liu, Y.Y.; Xie, S.H.; Lin, J.G.; Zheng, H.R.; Li, J.Y. High pressure effect on the electronic structure and thermoelectric properties of BiCuSeO: First-principles calculations. RSC Adv. 2014, 4, 54819–54825. [Google Scholar] [CrossRef]
- Zou, D.F.; Xie, S.H.; Liu, Y.Y.; Lin, J.G.; Li, J.Y. Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch = S, Se and Te): First-principles calculations. J. Mater. Chem. A 2013, 1, 8888–8896. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Shi, X.Y.; Yang, J.; Shi, X.; Chen, L.D.; Zhang, W.; Yang, J.; Singh, D.J.; Xi, L. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X = Se, S) from first principles. Phys. Rev. B 2012, 86, 155201. [Google Scholar]
Our Work | Experiment [37] | ||
---|---|---|---|
BiCuOSe | a (Å) c (Å) | 3.9641 9.0371 | 3.9287 8.9291 |
BiCuOS | a (Å) c (Å) | 3.8987 8.6546 | 3.8691 8.5602 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Lei, C.; Zou, D.; Liu, Y. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study. Materials 2020, 13, 1755. https://doi.org/10.3390/ma13071755
Zou C, Lei C, Zou D, Liu Y. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study. Materials. 2020; 13(7):1755. https://doi.org/10.3390/ma13071755
Chicago/Turabian StyleZou, Chunpeng, Chihou Lei, Daifeng Zou, and Yunya Liu. 2020. "Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study" Materials 13, no. 7: 1755. https://doi.org/10.3390/ma13071755
APA StyleZou, C., Lei, C., Zou, D., & Liu, Y. (2020). Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in n-Type BiCuOCh (Ch = Se, S): A First Principles Study. Materials, 13(7), 1755. https://doi.org/10.3390/ma13071755