Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles
Abstract
1. Introduction
2. Experimental
2.1. Material and Apparatus
2.2. Magnetite Nanoparticles Preparation Routine
3. Results and Discussion
3.1. Transmission Electron Microscopy
3.2. X-ray Diffraction
3.3. IR Spectroscopy
3.4. Mössbauer Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; Wiley&Sons Inc.: Hoboken, NJ, USA, 2012; ISBN 9780470541944. [Google Scholar]
- Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 435873. [Google Scholar] [CrossRef]
- Klekotka, U.; Satuła, D.; Spassov, S.; Kalska-Szostko, B. Surfactant dependence on physicochemical properties of magnetite nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 452–459. [Google Scholar] [CrossRef]
- Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013, 14, 21266–21305. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Ramakrishna Matte, H.S.S.; Voggu, R.; Govindaraj, A. Recent progress in the synthesis of inorganic nanoparticles. Dalt. Trans. 2012, 41, 5089. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19, 11465–11486. [Google Scholar] [CrossRef]
- Robert, W.; Kelsall Ian, W.; Hamley, M.G. Nanotechnologie; Kurzydłowski, K., Ed.; PWN: Warsaw, Poland, 2008. [Google Scholar]
- Vékás, L.; Bica, D.; Marinica, O. Magnetic nanofludis stabilized with various chain length surfactants. Rom. Rep. Phys. 2006, 58, 257–267. [Google Scholar]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. TOPICAL REVIEW. J. Phys. D. Appl. Phys. 2003, 36, R167. [Google Scholar] [CrossRef]
- Serna, C.J.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Roca, A.G.; Tartaj, P.; Rebolledo, A.F.; Costo, R.; Morales, M.P. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl. Phys. 2009, 42, 224002. [Google Scholar]
- Cabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M.P.; Herrasti, P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim. Acta 2008, 53, 3436–3441. [Google Scholar] [CrossRef]
- Kashanian, F.; Habibi-Rezaei, M.; Moosavi-Movahedi, A.A.; Bagherpour, A.R.; Vatani, M. The ambivalent effect of Fe3O4 nanoparticles on the urea-induced unfolding and dilution-based refolding of lysozyme F. Biomed. Mater. 2018, 13, 045014. [Google Scholar] [CrossRef] [PubMed]
- Yelenich, O.V.; Solopan, S.O.; Greneche, J.M.; Belous, A.G. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core–shell structures. Solid State Sci. 2015, 46, 19–26. [Google Scholar] [CrossRef]
- Brown, P.; Alan Hatton, T.; Eastoe, J. Magnetic surfactants. Curr. Opin. Colloid Interface Sci. 2015, 20, 140–150. [Google Scholar] [CrossRef]
- Lin, C.; Ho, K. Hyperthermia effect of surface-modified magnetite nanoparticles in a microfluidic system. NSTI-Nanotech 2007 2007, 2, 425–428. [Google Scholar]
- Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Salihov, S.V.; Ivanenkov, Y.A.; Krechetov, S.P.; Veselov, M.S.; Sviridenkova, N.V.; Savchenko, A.G.; Klyachko, N.L.; Golovin, Y.I.; Chufarova, N.V.; Beloglazkina, E.K.; et al. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles. J. Magn. Magn. Mater. 2015, 394, 173–178. [Google Scholar] [CrossRef]
- Roychowdhury, A.; Pati, S.P.; Kumar, S.; Das, D. Effects of magnetite nanoparticles on optical properties of zinc sulfide in fluorescent-magnetic Fe3O4/ZnS nanocomposites. Powder Technol. 2014, 254, 583–590. [Google Scholar] [CrossRef]
- Mandal, M.; Kundu, S.; Ghosh, S.K.; Panigrahi, S.; Sau, T.K.; Yusuf, S.M.; Pal, T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005, 286, 187–194. [Google Scholar] [CrossRef]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn.Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Orzechowska, E.; Wykowska, U. Organophosphorous modifications of multifunctional magnetic nanowires. Colloids Surf. B Biointerfaces 2013, 111, 509–516. [Google Scholar] [CrossRef]
- Huber, D. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Haracz, S.; Hilgendorff, M.; Rybka, J.D.; Giersig, M. Effect of surfactant for magnetic properties of iron oxide nanoparticles. Nucl. Instruments Methods Phys. Res. Sect. B 2015, 364, 120–126. [Google Scholar] [CrossRef]
- Salas, G.; Casado, C.; Teran, F.J.; Miranda, R.; Serna, C.J.; Morales, M.P. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 2012, 22, 21065. [Google Scholar] [CrossRef]
- Krishnan, K.M. Fundamentals and Applications of Magnetic Materials; Oxford University Press: Oxford, UK, 2016; ISBN 9780199570447. [Google Scholar]
- Périgo, E.A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F.J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302. [Google Scholar] [CrossRef]
- Pankhurst, Q.; Jones, S.; Dobson, J. Applications of magnetic nanoparticles in biomedicine: The story so far. J. Phys. D. Appl. Phys. 2016, 49, 501002. [Google Scholar] [CrossRef]
- Psimadas, D.; Baldi, G.; Ravagli, C.; Comes Franchini, M.; Locatelli, E.; Innocenti, C.; Sangregorio, C.; Loudos, G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4and Fe304metal cores. Nanotechnology 2014, 25. [Google Scholar] [CrossRef]
- Wijaya, A.; Brown, K.A.; Alper, J.D.; Hamad-Schifferli, K. Magnetic field heating study of Fe-doped Au nanoparticles. J. Magn. Magn. Mater. 2007, 309, 15–19. [Google Scholar] [CrossRef]
- Habib, A.H.; Ondeck, C.L.; Chaudhary, P.; Bockstaller, M.R.; McHenry, M.E. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 2008, 103, 07A307. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K. Enzymes immobilization on Fe3O4–gold nanoparticles. Appl. Surf. Sci. 2012, 258, 2783–2787. [Google Scholar] [CrossRef]
- Sun, S.H.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Cydzik, M.; Satuła, D.; Giersig, M. Mössbauer Studies of Core-Shell Nanoparticles. Acta Phys. Pol. A 2011, 119, 3–5. [Google Scholar] [CrossRef]
- Kalska, B.; Fumagalli, P.; Hilgendorff, M.; Giersig, M. Co/CoO core–shell nanoparticles—Temperature-dependent magneto-optic studies. Mater. Chem. Phys. 2008, 112, 1129–1132. [Google Scholar] [CrossRef]
- Fang, M.; Ström, V.; Olsson, R.T.; Belova, L.; Rao, K.V. Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology 2012, 23, 145601. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.N.; Gajbhiye, N.S.; Balaji, G. Magnetic properties of interacting single domain Fe3O4 particles. J. Alloys Compd. 2001, 326, 50–53. [Google Scholar] [CrossRef]
- Goss, C.J. Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Phys. Chem. Miner. 1988, 16, 164–171. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Tomaszewski, P.E. The uncertainty in the grain size calculation from X-ray diffraction data. Phase Transit. 2013, 86, 260–266. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach; Meyers, R.A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2000; ISBN 9780470027318. [Google Scholar]
- Namduri, H.; Nasrazadani, S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 2008, 50, 2493–2497. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Wykowska, U.; Satuła, D. Magnetic nanoparticles of core-shell structure. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 527–536. [Google Scholar] [CrossRef]
- Korecki, J.; Handke, B.; Spiridis, N.; Sle, T.; Flis-Kabulska, I.; Haber, J. Size effects in epitaxial films of magnetite. Thin Solid Films 2002, 412, 14–23. [Google Scholar] [CrossRef]
- Kalska-Szostko, B.; Satuła, D.; Olszewski, W. Mössbauer spectroscopy studies of the magnetic properties of ferrite nanoparticles. Curr. Appl. Phys. 2015, 15, 226–231. [Google Scholar] [CrossRef]
- Shepherd, J.P.; Koenitzer, J.W.; Aragn, R.; Spalek, J.; Honig, J.M. Heat capacity and entropy of nonstoichiometric magnetite Fe3(1-)O4: The thermodynamic nature of the Verwey transition. Phys. Rev. B 1991, 43, 8461–8471. [Google Scholar] [CrossRef] [PubMed]
- Kalska-Szostko, B.; Zubowska, M.; Satuła, D. Studies of the magnetite nanoparticles by means of Mössbauer spectroscopy. Acta Phys. Pol. A 2006, 109, 365–369. [Google Scholar] [CrossRef]
- Das, P.; Colombo, M.; Prosperi, D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B Biointerfaces 2019, 174, 42–55. [Google Scholar] [CrossRef]
Nanoparticles Name | Used Surfactant |
---|---|
Fe3O4-OA | Oleic acid |
Fe3O4-LA | Lauric acid |
Fe3O4-PA | Palmitic acid |
Fe3O4-SA | Stearic acid |
Fe3O4-CA | Caprylic acid |
Fe3O4-OLA | Oleylamine |
Fe3O4-TOA | Trioctylamine |
Fe3O4-HA | Hexylamine |
Fe3O4-DOA | Dioctylamine |
Fe3O4-TEA | Triethylamine |
Nanoparticle | Surfactant Concentration (mmol) | Size (TEM) ± 2 (nm) | Size ± 2 (nm) | Lattice Constant ± 0.02 (Å) | Strain × 10−3 ± 0.5 |
---|---|---|---|---|---|
Fe3O4-OA | 4 | 11 | 12 | 8.38 | 2.8 |
8 | 12 | 11 | 8.39 | 3.4 | |
16 | 10 | 11 | 8.40 | 2.1 | |
Fe3O4-LA | 4 | 12 | 11 | 8.39 | 3.2 |
8 | 12 | 12 | 8.39 | 2.8 | |
16 | 13 | 11 | 8.39 | 2.8 | |
Fe3O4-PA | 4 | 12 | 11 | 8.39 | 2.4 |
8 | 11 | 12 | 8.36 | 4.5 | |
16 | 8 | 9 | 8.38 | 4.5 | |
Fe3O4-SA | 4 | 17 | 14 | 8.38 | 3.0 |
8 | 15 | 13 | 8.38 | 4.6 | |
16 | 16 | 13 | 8.39 | 2.9 | |
Fe3O4-CA | 4 | 16 | 11 | 8.35 | 5.6 |
8 | 15 | 12 | 8.36 | 4.8 | |
16 | 14 | 12 | 8.35 | 6.3 | |
Fe3O4-TOA | 4 | 22 | 15 | 8.36 | 5.1 |
8 | 19 | 15 | 8.37 | 3.7 | |
16 | 23 | 14 | 8.37 | 3.6 | |
Fe3O4-HA | 4 | 13 | 12 | 8.39 | 1.9 |
8 | 10 | 11 | 8.38 | 2.4 | |
16 | 6 | 7 | 8.38 | 3.8 | |
Fe3O4-DOA | 4 | 25 | 17 | 8.39 | 1.8 |
8 | 11 | 12 | 8.39 | 1.9 | |
16 | 16 | 11 | 8.36 | 2.9 | |
Fe3O4-OLA | 4 | 10 | 10 | 8.39 | 2.8 |
8 | 8 | 7 | 8.38 | 3.2 | |
16 | 6 | 6 | 8.39 | 4.6 | |
Fe3O4-TEA | 4 | 29 | 14 | 8.37 | 4.3 |
8 | 28 | 13 | 8.36 | 5.5 | |
16 | 31 | 13 | 8.37 | 3.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klekotka, U.; Satuła, D.; Basa, A.; Kalska-Szostko, B. Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles. Materials 2020, 13, 1747. https://doi.org/10.3390/ma13071747
Klekotka U, Satuła D, Basa A, Kalska-Szostko B. Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles. Materials. 2020; 13(7):1747. https://doi.org/10.3390/ma13071747
Chicago/Turabian StyleKlekotka, Urszula, Dariusz Satuła, Anna Basa, and Beata Kalska-Szostko. 2020. "Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles" Materials 13, no. 7: 1747. https://doi.org/10.3390/ma13071747
APA StyleKlekotka, U., Satuła, D., Basa, A., & Kalska-Szostko, B. (2020). Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles. Materials, 13(7), 1747. https://doi.org/10.3390/ma13071747