Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Treatment Procedure
2.2. Suspension Preparation and Formation of Coatings
2.3. Coating Characterization
3. Results and Discussion
3.1. Microstructure and Structural Investigations of the Deposited Coatings
3.2. Heat Treatment
3.3. Microstructure, Structure and Topography of Coatings after Heat Treatment
3.4. Bonding Strength and Ability of Layers to Deform
3.5. In Vitro Corrosion Resistance Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yoneyama, T.; Miyazaki, S. Shape Memory Alloys for Biomedical Applications; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Bahraminasab, M.; Bin, B. NiTi shape memory alloys, promising materials in orthopedic applications. In Shape Memory Alloys—Processing, Characterization and Applications; InTech Open: New York, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Machado, L.G.; Savi, M.A. Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 2003, 36, 683–691. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, Y.; Tang, X. The applications and research progresses of nickel-titanium shape memory alloy in reconstructive surgery. Australas. Phys. Eng. 2010, 33, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Ryhänen, J.; Niemi, E.; Serlo, W.; Niemelä, E.; Sandvik, P.; Pernu, H.; Salo, T. Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J. Biomed. Mater. Res. 1997, 35, 451–457. [Google Scholar] [CrossRef]
- Shabalovskaya, S.A.; Rondelli, G.C.; Undisz, A.L.; Anderegg, J.W.; Burleigh, T.D.; Rettenmay, M.E. The electrochemical characteristics of native Nitinol surfaces. Biomaterials 2009, 30, 3662–3671. [Google Scholar] [CrossRef]
- Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.; Thomasa, B.; Leinenbach, C.; Eifler, D.; Minay, E.J.; Boccaccini, A.R. The electrophoretic deposition of Bioglass particles on stainless steel and Nitinol substrates. Surf. Coat. Tech. 2006, 200, 4835–4845. [Google Scholar] [CrossRef]
- Khalili, V.; Khalil-Allafi, J.; Maleki-Ghaleh, H. Titanium oxide (TiO2) coatings on NiTi shape memory substrate using electrophoretic deposition process. Int. J. Eng. A Basics 2013, 26, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Dudek, K.; Goryczka, T. Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy. Ceram. Int. 2016, 42, 19133–19141. [Google Scholar] [CrossRef]
- Dulski, M.; Dudek, K.; Grelowski, M.; Kubacki, J.; Hertlein, J.; Wojtyniak, M.; Goryczka, T. Impact of annealing on features of BCP coating on NiTi shape memory alloy: Preparation and physicochemical characterization. Appl. Surf. Sci. 2018, 437, 28–40. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Peters, C.; Roether, J.A.; Eifler, D.; Misra, S.K.; Minay, E.J. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J. Mater. Sci. 2006, 41, 8152–8159. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, M.; Cheng, Y.; Zheng, Y.F.; Xi, T.F.; Wei, S.C. Tantalum coated NiTi alloy by PIIID for biomedical application. Surf. Coat. Tech. 2013, 228, S2–S6. [Google Scholar] [CrossRef]
- Branzoi, V.; Iordoc, M.; Branzoi, F.; Vasilescu-Mirea, R.; Sbarcea, G. Influence of diamond-like carbon coating on the corrosion resistance of the NITINOL shape memory alloy. Surf. Interface Anal. 2010, 42, 502–509. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Xu, R.; Wang, W.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surf. Coat. Tech. 2013, 232, 370–375. [Google Scholar] [CrossRef]
- Banerjee, P.C.; Sun, T.; Wong, J.H.W.; Wang, M. Fabrication of an apatite/collagen composite coating on the NiTi shape memory alloy through electrochemical deposition and coating characterization. Mater. Sci. Forum 2009, 618–619, 319–323. [Google Scholar] [CrossRef]
- Dong, P.; Hao, W.; Xia, Y.; Da, G.; Wang, T. Comparison study of corrosion behavior and biocompatibility of polyethyleneimine (PEI)/heparin and hitosan/heparin coatings on NiTi alloy. J. Mater. Sci. Technol. 2010, 26, 1027–1031. [Google Scholar] [CrossRef]
- Mirak, M.; Alizadeh, M.; Salahinejad, E.; Amini, R. Zn–HA–TiO2 nanocomposite coatings electrodeposited on a NiTi shape memory alloy. Surf. Interface Anal. 2015, 47, 176–183. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate coatings, films and layers. Prog. Biomaterials 2012, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zreiqat, H. Functional coatings or films for hard-tissue applications. Materials 2010, 3, 3994–4050. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025004. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates in nature, biology and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef] [Green Version]
- Dorozhkin, S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 272–326. [Google Scholar] [CrossRef] [PubMed]
- Malysheva, A.Y.; Beletskii, B.I. Biocompatibility of apatite-containing implant materials. Inorg. Mater. 2001, 37, 180–183. [Google Scholar] [CrossRef]
- Dudek, K.; Plawecki, M.; Dulski, M.; Kubacki, J. Multifunctional layers formation on the surface of NiTi SMA during β-tricalcium phosphate deposition. Mater. Lett. 2015, 157, 295–298. [Google Scholar] [CrossRef]
- Maleki-Ghaleh, H.; Khalili, V.; Khalil-Allafi, J.; Javidi, M. Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process. Surf. Coat. Tech. 2012, 208, 57–63. [Google Scholar] [CrossRef]
- Katic, J.; Metikos-Hukovic, M.; Babic, R. Synthesis and characterization of calcium phosphate coatings on Nitinol. J. Appl. Electrochem. 2014, 44, 87–96. [Google Scholar] [CrossRef]
- Grigorov, I.G.; Shepatkovsky, O.P.; Kozhevnikov, V.L.; Sabirzyanov, N.A.; Borisov, S.V.; Bogdanova, E.A.; Shirokova, A.G. Bioactive coating on NiTi matrix. American J. Mater. Sci. Appl. 2015, 3, 1–5. [Google Scholar]
- Qu, J.; Lu, X.; Li, D.; Ding, Y.; Leng, Y.; Weng, J.; Qu, S.; Feng, B.; Watari, F. Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97, 40–48. [Google Scholar] [CrossRef]
- Eraković, S.; Janković, A.; Veljović, D.; Palcevskis, E.; Mitrić, M.; Stevanović, T.; Janaćković, D.; Mišković-Stanković, V. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. J. Phys. Chem. B 2013, 117, 1633–1643. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, B.; Wang, Y.; Zhou, X.; Weng, J.; Qu, S.; Feng, B.; Watari, F.; Ding, Y.; Leng, Y. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J. R. Soc. Interface 2011, 8, 529. [Google Scholar] [CrossRef] [Green Version]
- Lyasnikova, A.V.; Markelova, O.A.; Dudareva, O.A.; Grishina, I.P.; Lyasnikov, V.N. “Titanium–Silver-substituted calcium phosphates” Plasma coatings: Properties, comparison, and prospects of application. Metallurgist 2018, 62. [Google Scholar] [CrossRef]
- Djokić, S. Biomedical and Pharmaceutical Applications of Electrochemistry; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Feng, Q.L.; Cui, F.Z.; Kim, T.N.; Kim, J.W. Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J. Mater. Sci. Lett. 1999, 18, 559–561. [Google Scholar] [CrossRef]
- Dulski, M.; Dudek, K.; Chalon, D.; Kubacki, J.; Sulowicz, S.; Piotrowska-Seget, Z.; Mrozek-Wilczkiewicz, A.; Gawecki, R.; Nowak, A. Toward the development of an innovative implant: NiTi alloy functionalized by multifunctional β-TCP + Ag/SiO2 coatings. ACS Appl. Bio Mater. 2019, 2, 987–999. [Google Scholar] [CrossRef]
- Peltola, T.; Jokinen, M.; Veittola, S.; Rahiala, H.; Yli-Urpo, A. Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers. Biomaterials 2001, 22, 589–598. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 1998, 81, 1705–1728. [Google Scholar] [CrossRef]
- Hench, L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Wang, L.; Lok-Wang Ma, R.; Zhong, Y.; Lu, W.; Zhang, L. Superelastic behavior of in-situ eutectic-reaction manufactured high strength 3D porous NiTi-Nb scaffold. Scr. Mater. 2020, 181, 121–126. [Google Scholar] [CrossRef]
- Nishida, M.; Wayman, C.M.; Honma, T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. 1986, 17, 1505–1515. [Google Scholar] [CrossRef]
- Ferrari, R.; Moreno, R. EPD kinetics: A review. J. Eur. Ceram. Soc. 2010, 30, 1069–1078. [Google Scholar] [CrossRef]
- Boccaccini, R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I. Electrophoretic deposition of biomaterials. J. Roy. Soc. Interface 2010, 7, S580–S613. [Google Scholar] [CrossRef] [Green Version]
- Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid. Interfac. 2002, 97, 279–317. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Cheng, W.; Zhang, R. Thick hydroxyapatite coatings by electrophoretic deposition. Mater. Lett. 2002, 57, 99–105. [Google Scholar] [CrossRef]
- Mayr, H.; Ordung, M.; Ziegler, G. Development of thin electrophoretically deposited hydroxyapatite layers on TiAl6V4 hip prosthesis. J. Mater. Sci. 2006, 41, 8138–8143. [Google Scholar] [CrossRef]
- Stróż, A.; Łosiewicz, B.; Zubko, M.; Chmiela, B.; Balin, K.; Dercz, G.; Gawlikowski, M.; Goryczka, T. Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications. Mater. Charact. 2017, 132, 363–372. [Google Scholar] [CrossRef]
- Freitag, M.; Łosiewicz, B.; Goryczka, T.; Lelątko, J. Application of EIS to study the corrosion resistance of passivated NiTi shape memory alloy in simulated body fluid. Solid State Phenomena 2012, 183, 57–64. [Google Scholar] [CrossRef]
- Osak, P.; Łosiewicz, B. EIS study on interfacial properties of passivated Nitinol orthodontic wire in saliva modified with Eludril® Mouthwash. Prot. Met. Phys. Chem. Surf. 2018, 54, 680–688. [Google Scholar] [CrossRef]
- Peszke, J.; Dulski, M.; Nowak, A.; Balin, K.; Zubko, M.; Sułowicz, S.; Nowak, B.; Piotrowska-Seget, Z.; Talik, E.; Wojtyniak, M.; et al. Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents. RSC Adv. 2017, 7, 28092–28104. [Google Scholar] [CrossRef] [Green Version]
- Boukamp, B.A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31. [Google Scholar] [CrossRef] [Green Version]
- Koutsopoulos, S. Synthesis, and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar] [CrossRef]
- Sinyayev, V.A.; Shustikova, E.S.; Griggs, D.; Dorofeev, D.V. The nature of P–O bonds in the precipitated amorphous calcium phosphates and calcium magnesium phosphates. Glass Phys. Chem. 2005, 31, 671–675. [Google Scholar] [CrossRef]
- Frost, R.L.; López, A.; Scholz, R.; Xi, Y.; Lana, C. The molecular structure of the phosphate mineral beraunite Fe2+Fe53+(PO4)4(OH)5·4H2O—A vibrational spectroscopic study. Spectrochim. Acta A 2014, 128, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Sauer, G.R.; Zunic, W.B.; Durig, J.R.; Wuthier, R.E. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 1994, 54, 414–420. [Google Scholar] [CrossRef] [PubMed]
- de Aza, P.N.; Guitian, F.; Santos, C.; de Aza, C.; Cusco, R.; Artus, L. Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and β-Tricalcium phosphate. Chem. Mater. 1997, 9, 916–922. [Google Scholar] [CrossRef]
- Cusco, R.; Guitian, F.; de Aza, S.; Artus, L. Differentiation between Hydroxyapatite and β-Tricalcium Phosphate by Means of μ-Raman Spectroscopy. J. Eur. Ceram. Soc. 1998, 18, 1301–1305. [Google Scholar] [CrossRef]
- Dudek, K.; Dulski, M.; Goryczka, T.; Gerle, A. Structural changes of hydroxyapatite coating electrophoretically deposited on NiTi shape memory alloy. Ceram. Int. 2018, 44, 11292–11300. [Google Scholar] [CrossRef]
- Boccaccini, R.; Zhitomirsky, I. Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid St. M. 2002, 6, 251–260. [Google Scholar] [CrossRef]
- Ma, J.; Liang, C.H.; Kong, L.B.; Wang, C. Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J. Mater. Sci. Mater. M 2003, 14, 797–801. [Google Scholar] [CrossRef]
- Dudek, K.; Podwórny, J.; Dulski, M.; Nowak, A.; Peszke, J. X-ray investigations into silica/silver nanocomposite. Powder Diffr. 2017, 32, S82–S86. [Google Scholar] [CrossRef]
- Novaes, A.B., Jr.; de Souza, S.L.; de Barros, R.R.; Pereira, K.K.; Iezzi, G.; Piattelli, A. Influence of implant surfaces on osseointegration. Braz. Dent. J. 2010, 21, 471–481. [Google Scholar] [CrossRef]
- Kirillova, S.A.; Almjashev, V.I.; Gusarov, V.V. Phase relationships in the SiO2–TiO2 system. Russian J. Inorg. Chem. 2011, 56, 1539–1546. [Google Scholar] [CrossRef]
- Yuehuei, H.A.; Draughn, R.A. Mechanical Testing of Bone and the Bone-Implant Interface; CRC Press LLC.: Boca Raton, FL, USA, 1999. [Google Scholar]
- Wei, M.; Ruys, A.R.; Swain, M.V.; Kim, S.H.; Milthorpe, B.K.; Sorrell, C.C. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J. Mater. Sci. Mater. M 1999, 10, 401–409. [Google Scholar] [CrossRef]
Component | Concentration (g dm−3) |
---|---|
NaCl | 8.60 |
KCl | 0.30 |
CaCl2 | 0.48 |
No. | CPE-T1 (F cm−2 sϕ−1) | CPE-ϕ1 | Rct1 (Ω cm2) | CPE-T2 (F cm−2 sϕ−1) | CPE-ϕ2 | Rct2 (Ω cm2) |
---|---|---|---|---|---|---|
S1 | 3.1 × 10−5 ± 7.0 × 10−7 | 0.920 ± 0.005 | 4.0 × 106 ± 5.3 × 105 | - | - | - |
S2 | 1.5 × 10−5 ± 2.9 × 10−7 | 0.954 ± 0.003 | 5.9 × 107 ± 5.9 × 105 | - | - | - |
S3 | 1.9 × 10−6 ± 9.1 × 10−8 | 0.975 ± 0.011 | 3.3 × 104 ± 1.7 × 103 | 8.7 × 10−6 ± 1.7 × 10−7 | 0.831 ± 0.007 | 9.6 × 106 ± 5.6 × 105 |
S4 | 3.2 × 10−7 ± 4.0 × 10−8 | 1.072 ± 0.019 | 2.6 × 104 ± 1.9 × 103 | 9.5 × 10−6 ± 3.9 × 10−7 | 0.825 ± 0.015 | 1.1 × 107 ± 1.9 × 106 |
No. | Ecor (V) | jcor (A cm−2) | Ep (V) | jp (A cm−2) | Eb (V) | jb (A cm−2) |
---|---|---|---|---|---|---|
S1 | −0.292 | 4.1 × 10−9 | 1.020 | 5.5 × 10−6 | 1.620 | 8.7 × 10−2 |
S2 | 0.195 | 1.4 × 10−9 | 1.078 | 2.2 × 10−6 | 1.675 | 2.7 × 10−2 |
S3 | −0.265 | 4.1 × 10−10 | −0.207 | 6.5 × 10−9 | 0.475 | 6.5 × 10−4 |
S4 | −0.171 | 1.6 × 10−9 | −0.105 | 4.5 × 10−9 | 0.587 | 2.8 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudek, K.; Dulski, M.; Łosiewicz, B. Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials 2020, 13, 1648. https://doi.org/10.3390/ma13071648
Dudek K, Dulski M, Łosiewicz B. Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials. 2020; 13(7):1648. https://doi.org/10.3390/ma13071648
Chicago/Turabian StyleDudek, Karolina, Mateusz Dulski, and Bożena Łosiewicz. 2020. "Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer" Materials 13, no. 7: 1648. https://doi.org/10.3390/ma13071648
APA StyleDudek, K., Dulski, M., & Łosiewicz, B. (2020). Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials, 13(7), 1648. https://doi.org/10.3390/ma13071648