Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. BSE Images of Unexposed and Exposed Microstructures
3.2. TEM Examination of Unexposed Microstructures
3.3. Observation of Microstructure Changes during 10,000 h Exposure by Transmission Electron Microscopy
3.3.1. Bulk and Flaky Large γ Grains Appear after 5000 h and Exposure
3.3.2. A Large Amount of B2(ω) is Precipitated at the α2 + γ Lamellae Boundary and the γ/γ Interfaces during Long-Term Exposure
3.3.3. The γ Phase Precipitated in the B2 Area after 5000 and 10,000 h Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loria, E.A. Gamma titanium aluminides as prospective structural materials. Intermetallics 2000, 8, 1339–1345. [Google Scholar] [CrossRef]
- Tetsui, T. Gamma Ti aluminides for non-aerospace applications. Curr. Opin. Solid State Mater. Sci. 1999, 4, 243–248. [Google Scholar] [CrossRef]
- Djanarthany, S.; Viala, J.C.; Bouix, J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 2001, 72, 301–319. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperature structural intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Appel, F.; Oehring, M.; Wagner, R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics 2000, 8, 1283–1312. [Google Scholar] [CrossRef]
- Cheng, T.T.; Loretto, M.H. The decomposition of the beta phase in Ti-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys. Acta Mater. 1998, 46, 4801–4819. [Google Scholar] [CrossRef]
- Appel, F.; Brossmann, U.; Christoph, U.; Eggert, S.; Janschek, P.; Lorenz, U.; Müllauer, J.; Oehring, M.; Paul, J.D.H. Recent Progress in the Development of Gamma Titanium Aluminide Alloys. Adv. Eng. Mater. 2000, 2, 699–720. [Google Scholar] [CrossRef]
- Xu, X.J.; Lin, J.P.; Wang, Y.L.; Gao, J.F.; Lin, Z.; Chen, G.L. Microstructure and tensile properties of as-cast Ti–45Al–(8–9)Nb–(W, B, Y) alloy. J. Alloys Compd. 2006, 414, 131–136. [Google Scholar] [CrossRef]
- Lin, J.P.; Xu, X.J.; Wang, Y.L.; He, S.F.; Zhang, Y.; Song, X.P.; Chen, G.L. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics 2007, 15, 668–674. [Google Scholar] [CrossRef]
- Liu, C.T. Recent Advances in Ordered Intermetallics. Mater. Chem. Phys. 1995, 288, 77–86. [Google Scholar] [CrossRef]
- Kainuma, R.; Fujita, Y.; Mitsui, H.; Ohnuma, I.; Ishida, K. Phase equilibria among α (hcp), β (bcc) and γ (L1 0) phases in Ti–Al base ternary alloys. Intermetallics 2000, 8, 855–867. [Google Scholar] [CrossRef]
- Paul, J.D.H.; Appel, F.; Wagner, R. The compression behaviour of niobium alloyed γ-titanium alumindies. Acta Mater. 1998, 46, 1075–1085. [Google Scholar] [CrossRef]
- Dobromyslov, A.V.; Elkin, V.A. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4–6 periods. Scr. Mater. 2001, 44, 905–910. [Google Scholar] [CrossRef]
- Yan, Y.Q.; Zhou, L.; Wang, W.S.; Zhang, Y.N. 8.5Nb–TiAl alloy with fine grains. J. Alloys Compd. 2003, 361, 241–246. [Google Scholar] [CrossRef]
- Herzig, C.; Przeorski, T.; Friesel, M.; Hisker, F.; Divinski, S. Tracer solute diffusion of Nb, Zr, Cr, Fe, and Ni in γ-TiAl: Effect of preferential site occupation. Intermetallics 2001, 9, 461–472. [Google Scholar] [CrossRef]
- Lin, J.P.; Zhao, L.L.; Li, G.Y.; Zhang, L.Q.; Song, X.P.; Ye, F.; Chen, G.L. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics 2011, 19, 131–136. [Google Scholar] [CrossRef]
- Schloffer, M.; Rashkova, B.; SchöBerl, T.; Schwaighofer, E.; Zhang, Z.; Clemens, H.; Mayer, S. Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness. Acta Mater. 2014, 64, 241–252. [Google Scholar] [CrossRef]
- Qiang, F.M.; Kou, H.C.; Tang, B.; Song, L.; Lia, J. Effect of cooling rate on microstructure evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy during multi-step heat treatment. Mater. Charact. 2018, 145, 210–217. [Google Scholar] [CrossRef]
- Cheng, T.T.; Willis, M.R.; Jones, I.P. Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl. Intermetallics 1999, 7, 89–99. [Google Scholar] [CrossRef]
- Strychor, R.; Williams, J.C.; Soffa, W.A. Phase Transformations and Modulated Microstructures in Ti-Al-Nb Alloys. Metall. Mater. Trans. A 1998, 19, 225–234. [Google Scholar] [CrossRef]
- Sharma, G.; Ramanujan, R.V.; Tiwari, G.P. Interphase precipitation in a γ-TiAl alloy. Mater. Sci. Eng. A 1999, 269, 21–25. [Google Scholar] [CrossRef]
- Tanaka, K.; Okamoto, K.; Inui, H.; Minonishi, Y.; Yamaguchi, M.; Koiwa, M. Elastic constants and their temperature dependence for the intermetallic compound Ti3Al. Philos. Mag. A 1996, 73, 1475–1488. [Google Scholar] [CrossRef]
- Zhang, W.J.; Deevi, S.C.; Chen, G.L. On the origin of superior high strength of Ti–45Al-10Nb alloys. Intermetallics 2002, 10, 403–406. [Google Scholar] [CrossRef]
- Huang, Z.W.; Voice, W.E.; Bowen, P. Thermal stability of Ti–46Al–5Nb–1W alloy. Mater. Sci. Eng. A 2002, 329, 435–445. [Google Scholar] [CrossRef]
- Inkson, B.J.; Clemens, H.; Marien, J. γ α2 B2 Lamellar Domains in Rolled TiAl. Scr. Mater. 1998, 38, 1377–1382. [Google Scholar] [CrossRef]
- Fang, L.; Ding, X.F.; He, J.P.; Zhang, L.Q.; Lin, Z.; Lin, J.P. Microstructure instability of fully lamellar TiAl alloy containing high content of Nb after long-term thermal cycling. Trans. Nonferrous. Met. Soc. China 2014, 24, 3095–3102. [Google Scholar] [CrossRef]
- Huang, Z.W.; Hu, W. Thermal stability of an intermediate strength fully lamellar Ti–45Al–2Mn–2Nb-0.8 vol.% TiB2 alloy. Intermetallics 2014, 54, 49–55. [Google Scholar] [CrossRef]
- Hu, D.; Godfrey, A.B.; Loretto, M.H. Thermal stability of a fully lamellar Ti-48Al-2Cr-2Nb-1B alloy. Intermetallics 1998, 6, 413–417. [Google Scholar] [CrossRef]
- Beschliesser, M.; Chatterjee, A.; Lorich, A.; Knabl, W.; Kestler, H.; Dehm, G.; Clemens, H. Designed fully lamellar microstructures in a γ-TiAl based alloy: Adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 °C. Mater. Sci. Eng. A 2002, 329, 124–129. [Google Scholar] [CrossRef]
- Huang, Z.W.; Cong, T. Microstructural instability and embrittlement behaviour of an Al-lean, high-Nb γ-TiAl-based alloy subjected to a long-term thermal exposure in air. Intermetallics 2010, 18, 161–172. [Google Scholar] [CrossRef]
- Huang, Z.W.; Voice, W.; Bowen, P. Effects of long-term air exposure on the stability of lamellar TiAl alloys. Intermetallics 2000, 8, 417–426. [Google Scholar] [CrossRef]
- Huang, Z.W.; Voice, W.; Bowen, P. Thermal exposure induced α2+γ→B2(ω) and α2→B2(ω) phase transformations in a high Nb fully lamellar TiAl alloy. Scr. Mater. 2003, 48, 79–84. [Google Scholar] [CrossRef]
- Huang, Z.W. Ordered ω phases in a 4Zr–4Nb-containing TiAl-based alloy. Acta. Mater. 2008, 56, 1689–1700. [Google Scholar] [CrossRef]
- Song, L.; Zhang, L.Q.; Xu, X.J.; Sun, J.; Lin, J.P. Omega phase in as-cast high-Nb-containing TiAl alloy. Scr. Mater. 2013, 68, 929–932. [Google Scholar] [CrossRef]
- Song, L.; Peng, C.; Xu, X.J.; You, L.; Wang, Y.L.; Lin, J.P. ωo phase precipitation in annealed high Nb containing TiAl alloys. Prog. Nat. Sci. Mater. Int. 2015, 25, 147–152. [Google Scholar] [CrossRef]
- Huang, Z.W. Thermal stability of Ti-44Al-4Nb-4Zr-0.2Si-1B alloy. Intermetallics 2013, 42, 170–179. [Google Scholar] [CrossRef]
- Chen, G.L.; Xu, X.J.; Teng, Z.K.; Wang, Y.L.; Lin, J.P. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics 2007, 15, 625–631. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lin, J.P.; He, Y.H.; Wang, Y.L.; Chen, G.L. Microstructure and mechanical properties of as-cast Ti–45Al–8.5Nb–(W,B,Y) alloy with industrial scale. Mater. Sci. Eng. A 2007, 471, 82–87. [Google Scholar] [CrossRef]
- Wang, Y.H.; Lin, J.P.; He, Y.H.; Wang, Y.L.; Chen, G.L. Microstructures and mechanical properties of Ti–45Al–8.5Nb–(W,B,Y) alloy by SPS–HIP route. Mater. Sci. Eng. A 2008, 489, 55–61. [Google Scholar] [CrossRef]
- Huang, Z.W. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scr. Mater. 2005, 52, 1021–1025. [Google Scholar] [CrossRef]
- Huang, Z.W.; Zhu, D.G. Thermal stability of Ti–44Al–8Nb–1B alloy. Intermetallics 2008, 16, 156–167. [Google Scholar] [CrossRef]
- Huang, Z.W. Thermal stability of Ti-44Al-4Nb-4Hf-0.2Si-1B alloy. Intermetallics 2013, 37, 11–21. [Google Scholar] [CrossRef]
- Silcock, J.M. An X-ray examination of the to phase in TiV, TiMo and TiCr alloys. Acta Metall. 1958, 6, 481–493. [Google Scholar] [CrossRef]
- Takeyama, M.; Kobayashi, S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations. Intermetallics 2005, 13, 993–999. [Google Scholar] [CrossRef]
- Fang, L.; Lin, J.P.; Ding, X.F. Thermal cycling induced microstructural instability in fully lamellar Ti-45Al-8.5Nb-(W, B, Y) alloys. Mater. Chem. Phys. 2015, 167, 112–118. [Google Scholar] [CrossRef]
- Song, L.; Xu, X.J.; You, L.; Liang, Y.F.; Lin, J.P. Phase transformation and decomposition mechanisms of the βo(ω) phase in cast high Nb containing TiAl alloy. J. Alloys Compd. 2014, 616, 483–491. [Google Scholar] [CrossRef]
- Song, L.; Xu, X.J.; You, L.; Liang, Y.F.; Lin, J.P. Ordered omega phase transformations in Ti-45Al-8.5Nb-0.2B alloy. Intermetallics 2015, 65, 22–28. [Google Scholar] [CrossRef]
- Mishin, Y.; Herzig, C. Diffusion in the Ti-Al system. Acta. Mater. 2000, 48, 589–623. [Google Scholar] [CrossRef]
- Du, X.W.; Zhu, J.; Zhang, X.; Cheng, Z.Y.; Kim, Y.W. Creep induced α2→β2 phase transformation in a fully-lamellar TiAl alloy. Scr. Mater. 2000, 43, 597–602. [Google Scholar] [CrossRef]
- Pond, R.C.; Shang, P.; Cheng, T.T.; Aindow, M. Interfacial dislocation mechanism for diffusional phase transformations exhibiting martensitic crystallography: Formation of TiAl + Ti3Al lamellae. Acta. Mater. 2000, 48, 1047–1053. [Google Scholar] [CrossRef]
Exposure Time (h) | Volume Fraction (%) | Size (μm) | ||||
---|---|---|---|---|---|---|
B2(ω) | Equiaxial γ | α2 +γ Lamella | B2(ω) | Equiaxial γ | α2 +γ Lamella | |
0 | 2.2 ± 0.3 | 57.6 ± 3.2 | 40.2 ± 3.5 | 10.3 ± 1.5 | 20.9 ± 3.4 | 36.2 ± 1.3 |
3000 | 3.7 ± 0.4 | 58.5 ± 4.1 | 37.8 ± 4.2 | 16.4 ± 3.2 | 23.3 ± 1.6 | 45.5 ± 2.7 |
5000 | 6.5 ± 0.2 | 61.3 ± 3.7 | 32.3 ± 3.8 | 24.4 ± 2.7 | 27.2 ± 2.3 | 32.3 ± 2.4 |
10,000 | 16.8 ± 2.4 | 63.2 ± 4.3 | 20.0 ± 4.3 | 28.8 ± 1.1 | 47.5 ± 3.8 | 26.6 ± 3.5 |
Element | Composition of Major Constituents (at. %) | Partition Factor k | ||||
---|---|---|---|---|---|---|
β (B2 + ω) | γ | α2 | K(β/γ) | K(β/α2) | K(α2/γ) | |
Ti | 52.6 ± 1.2 | 44.5 ± 0.9 | 52.5 ± 0.8 | 1.18 | 1.00 | 1.17 |
Al | 34.4 ± 0.4 | 46.0 ± 0.8 | 37.8 ± 0.7 | 0.75 | 0.91 | 0.82 |
Nb | 12.1 ± 0.2 | 9.2 ± 0.3 | 9.4 ± 0.2 | 1.32 | 1.29 | 1.02 |
W | 0.9 ± 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 3.00 | 3.00 | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cai, Z.; Jiang, X.; Chen, S.; Huang, Z.; Sun, H. Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure. Materials 2020, 13, 1638. https://doi.org/10.3390/ma13071638
Chen Z, Cai Z, Jiang X, Chen S, Huang Z, Sun H. Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure. Materials. 2020; 13(7):1638. https://doi.org/10.3390/ma13071638
Chicago/Turabian StyleChen, Zhiyuan, Zhengkun Cai, Xiaosong Jiang, Song Chen, Zewen Huang, and Hongliang Sun. 2020. "Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure" Materials 13, no. 7: 1638. https://doi.org/10.3390/ma13071638
APA StyleChen, Z., Cai, Z., Jiang, X., Chen, S., Huang, Z., & Sun, H. (2020). Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure. Materials, 13(7), 1638. https://doi.org/10.3390/ma13071638