Effect of Slope Grain on Mechanical Properties of Different Wood Species
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The values of physical and mechanical parameters for American Hickory were significantly higher than for the other studied wood species.
- The grain deviation angle from the rectilinear pattern has a significant impact on the values of mechanical properties and determines the usability of the material intended for the production of tool grips and drumsticks.
- The most significant influence of the grain deviation angle on mechanical parameters was recorded in the case of work to maximum load values. For all species, they assumed an absolute decrease in value exceeding 50% of the initial value; for the two examined wood species, this decrease was even over 60%.
- The least influence of the grain deviation angle on the mechanical parameters was observed for elm wood. However, this species was generally characterized by far lower values of mechanical parameters than other species.
- During the production of tool grips and drumsticks, the deviation of the slope of grain should be avoided, as this may result in their shorter lifetime.
Author Contributions
Funding
Conflicts of Interest
References
- Collins, A.F. A Birds’ Eye View of Invention; Thomas Y. Crowell: New York, NY, USA, 1926. [Google Scholar]
- Klein, A.; Bockhorn, O.; Mayer, K.; Grabner, M. Central European wood species: Characterization using old knowledge. J. Wood Sci. 2016, 62, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Grabner, M.; Buchinger, G.; Jeitler, M. Stories about building history told by wooden elements—Case studies from Eastern Austria. Int. J. Archit. Heritage 2018, 12, 178–194. [Google Scholar] [CrossRef]
- Obataya, E.; Ono, T.; Norimoto, M. Vibrational properties of wood along the grain. J. Mater. Sci. 2000, 35, 2993–3001. [Google Scholar] [CrossRef]
- Horn, R.A. Morphology of Pulp Fiber from Hardwoods and Influence on Paper Strenght; Res. Pap. FPL-312.; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1978; p. 8. [Google Scholar]
- Kollmann, F.; Côté, W.A. Principles of Wood Science and Technology; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Dinwoodie, J.M. Timber—A review of the structure-mechanical property relationship. J. Microsc. 1975, 104, 3–32. [Google Scholar] [CrossRef]
- Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composites; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Cown, D.J.; Walford, B.; Kimberley, M.O. Cross-grain effect on tensile strength and bending stiffness of Pinus radiata structural lumber. N. Z. J. For. Sci. 1996, 25, 256–262. [Google Scholar]
- Liu, J.Y.; Floeter, L.H. Shear strength in principal plane of wood. J. Eng. Mech. 1984, 110, 930–936. [Google Scholar] [CrossRef]
- Gorlacher, R. A method for determining the rolling shear modulus of timber. Holz Roh- Werkst. 2002, 60, 317–322. [Google Scholar]
- Xavier, J.; Garrido, N.; Oliveira, M.; Morais, J.; Camanho, P.; Pierron, F. A comparison between the Iosipescu and off-axis shear test methods for the shear characterization of Pinus pinaster Ait. Compos. A Appl. Sci. Manuf. 2009, 35, 827–884. [Google Scholar] [CrossRef]
- Hardy, W. The Effect of Modifying the Inclination of the Grain in Ash from 1 in 12 to 1 in 10; Report CB (EL) 1717; British Engineering Standards Association by RAE: Farnborough, UK, 1924. [Google Scholar]
- Brazier, J.D. The Influence of Grain Direction on Some of the Strength Properties of Canadian Grown Sitka Spruce; Forest Products Research Laboratory, Int.: Springfield, OR, USA, 1954. [Google Scholar]
- US Dept Agric Forest Service. Anonymous Wood Handbook; US Dept Agric Forest Service: Springfield, MO, USA, 1999; Volume 4, p. 28. [Google Scholar]
- Pope, D.J.; Marcroft, J.P.; Whale, L.R.J. The effect of global slope of grain on the bending strength of scaffold boards. Holz als Roh- und Werkst. 2005, 63, 321–326. [Google Scholar] [CrossRef]
- ISO 13061-2. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- PN-63/D-04117. Physical and mechanical properties of wood. Determination of the elasticity coefficient for static bending; Polish Committee for Standardization: Warsaw, Poland, 1963. [Google Scholar]
- PN-77/D-04103. Wood. Determination of static bending strength; Polish Committee for Standardization: Warsaw, Poland, 1977. [Google Scholar]
- ISO 13061-1. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens— Part 1: Determination of Moisture Content for Physical and Mechanical Tests; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Wangenführ, R. Holzatlas. 6., Bearbeitete und Erweiterte Auflage; Fachbuchverlag: Leipzig, Germany, 2007. [Google Scholar]
- Kretschmann, D.E. Wood Handbook, Chapter 05: Mechanical Properties of Wood. General Technical Report FPL-GTR-190; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Wagenführ, R. Scheiber Chr. Holzatlas, VEB; Fachbuchwer: Leipzig, Germany, 1985. [Google Scholar]
- Krzysik, F. Nauka o Drewnie; PWN: Warszawa, Poland, 1975. [Google Scholar]
- Gryc, V.; Vavrčík, H.; Rybníček, M.; Přemyslovská, E. The relation between the microscopic structure and the wood density of European beech (Fagus sylvatica L.). J. For. Sci. 2008, 54, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Kretschmann, D.E.; Bridwell, J.J.; Nelson, T.C. Effect of changing slope of grain on ash, maple, and yellow birch in bending strength. In Proceedings of the WCTE 2010, World Conference on Timber Engineering, Riva del Garda, Trento, Italy, 20–24 June 2010; p. 10, Paper no. 716. [Google Scholar]
- Moliński, W.; Mania, P.; Tomczuk, G. The usefulness of different wood species for bow manufacturing. Folia For. Pol. Ser. A For. 2016, 58, 183–187. [Google Scholar] [CrossRef] [Green Version]
Species | MC (%) | Wood Density (kg·m−3) |
---|---|---|
Hickory | 8.9 ± 0.34 | 770 ± 22 |
Ash | 8.8 ± 0.32 | 655 ± 16 |
Elm | 8.4 ± 0.41 | 570 ± 21 |
Beech | 8.9 ± 0.38 | 745 ± 14 |
Maple | 8.6 ± 0.36 | 630 ± 17 |
Mechanical Properties | Slope of Grain (°) | Hickory | Ash | Elm | Beech | Maple |
---|---|---|---|---|---|---|
Modulus of Rupture MOR (MPa) | 0 | 179.1 b | 130.3 c | 84.4 a | 147.6 c | 118.2 c |
5 | 165.7 b | 126.1 b,c | 76.9 a | 135.5 c | 113.7 c | |
8 | 146.1 c | 116.6 b | 72.5 a | 113.7 b | 92.6 b | |
12 | 99.4 a | 55.6 a | 56.1 b | 102.9 a,b | 82.3 a,b | |
15 | 79.0 a | 51.8 a | 52.5 b | 82.0 a | 74.3 a | |
Modulus of Elasticity MOE (MPa) | 0 | 15380 b | 11410 c | 7010 a | 13440 d | 10670 b |
5 | 14410 b | 10790 b,c | 6580 a | 12030 c | 10350 b | |
8 | 12870 c | 10390 b | 6220 a | 12030 c | 8360 a | |
12 | 8380 a | 4400 a | 4810 b | 9600 a | 7120 a | |
15 | 7260 a | 3940 a | 4080 b | 7000 b | 5680 c |
Mechanical Properties | The Slope of Grain (°) | Hickory | Ash | Elm | Beech | Maple |
---|---|---|---|---|---|---|
Elastic strain energy Ue (J) | 0 | 2.997 a | 1.426 a | 1.449 b | 1.709 c | 1.190 a |
5 | 3.258 a | 1.369 a | 1.444 b | 1.554 b,c | 1.179 a | |
8 | 3.028 a | 1.297 a | 1.191 a,b | 1.486 a,b,c | 1.157 a | |
12 | 2.060 b | 0.862 b | 0.864 a | 1.149 a,b | 1.004 a | |
15 | 1.776 b | 0.882 b | 0.808 a | 1.041 a | 0.812 b | |
Work to maximum Load WML (J) | 0 | 3.574 a | 2.722 a | 1.505 b | 2.687 c | 1.730 a |
5 | 2.957 a | 2.715 a | 1.203 a,b | 2.291 b,c | 1.642 a | |
8 | 2.497 a | 2.413 a | 1.145 a,b | 1.922 a,b,c | 1.315 b | |
12 | 1.634 b | 0.883 b | 0.774 a | 1.589 a,b | 1.209 b | |
15 | 1.614 b | 0.837 b | 0.746 a | 0.963 a | 0.836 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mania, P.; Siuda, F.; Roszyk, E. Effect of Slope Grain on Mechanical Properties of Different Wood Species. Materials 2020, 13, 1503. https://doi.org/10.3390/ma13071503
Mania P, Siuda F, Roszyk E. Effect of Slope Grain on Mechanical Properties of Different Wood Species. Materials. 2020; 13(7):1503. https://doi.org/10.3390/ma13071503
Chicago/Turabian StyleMania, Przemysław, Filip Siuda, and Edward Roszyk. 2020. "Effect of Slope Grain on Mechanical Properties of Different Wood Species" Materials 13, no. 7: 1503. https://doi.org/10.3390/ma13071503
APA StyleMania, P., Siuda, F., & Roszyk, E. (2020). Effect of Slope Grain on Mechanical Properties of Different Wood Species. Materials, 13(7), 1503. https://doi.org/10.3390/ma13071503