Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Old Newspaper Disintegration and Fiber Individualization
2.3. Composite Materials’ Preparation and Specimen Obtention
2.4. Specimens Testing
3. Results and Discussion
3.1. Impact Strength
3.2. Water Uptake Behavior of ONPF-Reinforced Composites
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014, 299, 9–26. [Google Scholar] [CrossRef]
- Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod. 2018, 195, 240–267. [Google Scholar] [CrossRef]
- Thomason, J.L. Why are natural fibres failing to deliver on composite performance? In Proceedings of the 17th International Conference on Composite Materials, Edinburg, UK, 27–31 July 2009. [Google Scholar]
- Holbery, J.; Houston, D. Natural-fiber-reinforced Polym. Compos. in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Baan, R.A.; Grosse, Y. Man-made mineral (vitreous) fibres: Evaluations of cancer hazards by the IARC Monographs Programme. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 2004, 553, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Thomason, J.L.; Rudeiros-Fernández, J.L. A review of the impact performance of natural fiber thermoplastic composites. Front. Mater. 2018, 5, 60. [Google Scholar] [CrossRef]
- Arbelaiz, A.; Fernández, B.; Valea, A.; Mondragon, I. Mechanical properties of short flax fibre bundle/poly(ε{lunate}-caprolactone) composites: Influence of matrix modification and fibre content. Carbohydr. Polym. 2006, 64, 224–232. [Google Scholar] [CrossRef]
- Espert, A.; Vilaplana, F.; Karlsson, S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1267–1276. [Google Scholar] [CrossRef]
- John, M.J.; Anandjiwala, R.D. Chemical modification of flax reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 442–448. [Google Scholar] [CrossRef]
- Paul, S.A.; Joseph, K.; Mathew, G.; Pothen, L.A.; Thomas, S. Preparation of polypropylene Fiber/Banana fiber composites by novel commingling method. Polym. Compos. 2010, 31, 816–824. [Google Scholar] [CrossRef]
- Yang, H.S.; Wolcott, M.P.; Kim, H.S.; Kim, S.; Kim, H.J. Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polym. Test. 2006, 25, 668–676. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Rong, M.Z.; Lu, X. Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites. Compos. Sci. Technol. 2005, 65, 2514–2525. [Google Scholar] [CrossRef]
- Rana, A.K.; Mandal, A.; Mitra, B.C.; Jacobson, R.; Rowell, R.; Banerjee, A.N. Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 1998, 69, 329–338. [Google Scholar] [CrossRef]
- Marcovich, N.E.; Villar, M.A. Thermal and mechanical characterization of linear low-density polyethylene/wood flour composites. J. Appl. Polym. Sci. 2003, 90, 2775–2784. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, S.K. Short bamboo fiber-reinforced HDPE composites: Influence of fiber content and modification on strength of the composite. J. Reinf. Plast. Compos. 2010, 29, 2199–2210. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Ashori, A. Fundamental studies on wood-plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym. Compos. 2008, 29, 569–573. [Google Scholar] [CrossRef]
- Feng, D.; Caulfield, D.F.; Sanadi, A.R. Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym. Compos. 2001, 22, 506–517. [Google Scholar] [CrossRef]
- Clemons, C.; Sanadi, A.R. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: Effects of temperature and composition. J. Reinf. Plast. Compos. 2007, 26, 1587–1602. [Google Scholar] [CrossRef]
- Rozman, H.D.; Lai, C.Y.; Ismail, H.; Ishak, Z.A.M. The effect of coupling agents on the mechanical and physical properties of oil palm empty fruit bunch-polypropylene composites. Polym. Int. 2000, 49, 1273–1278. [Google Scholar] [CrossRef]
- Bettini, S.H.P.; Bicudo, A.B.L.C.; Augusto, I.S.; Antunes, L.A.; Morassi, P.L.; Condotta, R.; Bonse, B.C. Investigation on the use of coir fiber as alternative reinforcement in polypropylene. J. Appl. Polym. Sci. 2010, 118, 2841–2848. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Méndez, J.; Espinach, F.; Tarrés, Q.; Ardanuy, M.; Mutjé, P. Impact strength and water uptake behaviors of fully bio-based PA11-SGW composites. Polymers 2018, 10, 717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candido, V.S.; da Silva, A.C.R.; Simonassi, N.T.; da Luz, F.S.; Monteiro, S.N. Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. J. Mater. Res. Technol. 2017, 6, 334–338. [Google Scholar] [CrossRef]
- Granda, L.; Espinach, F.; Méndez, J.; Vilaseca, F.; Delgado-Aguilar, M.; Mutjé, P. Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties. Compos. Part B Eng. 2016, 97, 176–182. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.; Bhat, A.H.; Abu Baker, A. Impact properties of natural fiber hybrid reinforced epoxy composites. In Advances in Materials and Processing Technologies II, Pts 1 and 2; Hashmi, M.S.J., Mridha, S., Naher, S., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 264–265, pp. 688–693. [Google Scholar]
- Razak, N.I.A.; Ibrahim, N.A.; Zainuddin, N.; Rayung, M.; Saad, W.Z. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules 2014, 19, 2957–2968. [Google Scholar] [CrossRef] [Green Version]
- Espinach, F.; Boufi, S.; Delgado-Aguilar, M.; Julián, F.; Mutjé, P.; Méndez, J. Composites from poly (lactic acid) and bleached chemical fibres: Thermal properties. Compos. Part B Eng. 2018, 134, 169–176. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, W.; Li, Z.; Wang, L.; Cai, H. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers 2018, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gu, J.; Tu, D.; Guan, L.; Hu, C. Efficient Hydrophobic Modification of Old Newspaper and Its Application in Paper Fiber Reinforced Composites. Polymers 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Sanadi, A.R.; Young, R.A.; Clemons, C.; Rowell, R.M. Recycled Newspaper Fibers as Reinforcing Fillers in Thermoplastics: Part I-Analysis of Tensile and Impact Properties in Polypropylene. J. Reinf. Plast. Compos. 1994, 13, 54–67. [Google Scholar] [CrossRef]
- Melo, R.; Santos, W.; de Lima, A.G.B.; Lima, W.; Silva, J.; Farias, R. Water absorption process in polymer composites: Theory analysis and applications. In Transport Phenomena in Multiphase Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 219–249. [Google Scholar]
- Gomes dos Santos, W.; da Costa Melo, R.; de Lima, A. Water absorption in Polym. Compos. reinforced with vegetable fiber using Langmuir-type model: An exact mathematical treatment. Defect Diffus. Forum 2017, 371, 102–110. [Google Scholar] [CrossRef]
- Boukettaya, S.; Alawar, A.; Almaskari, F.; Ben Daly, H.; Abdala, A.; Chatti, S. Modeling of water diffusion mechanism in polypropylene/date palm fiber composite materials. J. Compos. Mater. 2018, 52, 2651–2659. [Google Scholar] [CrossRef]
- Orue, A.; Eceiza, A.; Peña-Rodriguez, C.; Arbelaiz, A. Water uptake behavior and young modulus prediction of composites based on treated sisal fibers and poly (lactic acid). Materials 2016, 9, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, A. Effects of Water Absorption on Mechanical Properties of Hemp Fiber Composites. Polym. Compos. 2012, 33, 120–128. [Google Scholar] [CrossRef]
- Osman, H.; Ismail, H.; Mustapha, M. Effects of Maleic Anhydride Polypropylene on Tensile, Water Absorption, and Morphological Properties of Recycled Newspaper Filled Polypropylene/Natural Rubber Composites. J. Compos. Mater. 2010, 44, 1477–1491. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Vazquez, A. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1672–1680. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- López, J.P.; Boufi, S.; El Mansouri, N.E.; Mutjé, P.; Vilaseca, F. PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Compos. Part B Eng. 2012, 43, 3453–3461. [Google Scholar] [CrossRef]
- Serrano, A.; Espinach, F.X.; Julian, F.; Del Rey, R.; Mendez, J.A.; Mutje, P. Estimation of the interfacial shears strength, orientation factor and mean equivalent intrinsic tensile strength in old newspaper fiber/polypropylene composites. Compos. Part B Eng. 2013, 50, 232–238. [Google Scholar] [CrossRef]
- Serrano, A.; Espinach, F.X.; Tresserras, J.; del Rey, R.; Pellicer, N.; Mutje, P. Macro and micromechanics analysis of short fiber composites stiffness: The case of old newspaper fibers-polypropylene composites. Mater. Des. 2014, 55, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; Espinach, F.X.; Tresserras, J.; Pellicer, N.; Alcala, M.; Mutje, P. Study on the technical feasibility of replacing glass fibers by old newspaper recycled fibers as polypropylene reinforcement. J. Clean. Prod. 2014, 65, 489–496. [Google Scholar] [CrossRef]
- Tarres, Q.; Soler, J.; Rojas-Sola, J.I.; Oliver-Ortega, H.; Julian, F.; Espinach, F.X.; Mutje, P.; Delgado-Aguilar, M. Flexural Properties and Mean Intrinsic Flexural Strength of Old Newspaper Reinforced Polypropylene Composites. Polymers 2019, 11, 1244. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM D638-10 Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ISO. ISO 179-1:2010 Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. ISO 1183-1:2012 Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Khan, M.A.; Ganster, J.; Fink, H.-P. Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 846–851. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Lopes, F.P.D.; Barbosa, A.P.; Bevitori, A.B.; Da Silva, I.L.A.; Da Costa, L.L. Natural Lignocellulosic Fibers as Engineering Materials—An Overview. Metall. Mater. Trans. A 2011, 42, 2963–2974. [Google Scholar] [CrossRef] [Green Version]
- Guettler, B.E.; Moresoli, C.; Simon, L.C. Mechanical properties and crack propagation of soy-polypropylene composites. J. Appl. Polym. Sci. 2013, 130, 175–185. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, L.; Cui, X.; Guo, W. Crystallization Behavior and Properties of Glass Fiber Reinforced Polypropylene Composites. Polymers 2019, 11, 1198. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural Fibers, Biopolymers and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–877. [Google Scholar]
- Arbelaiz, A.; Fernández, B.; Ramos, J.A.; Retegi, A.; Llano-Ponte, R.; Mondragon, I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 2005, 65, 1582–1592. [Google Scholar] [CrossRef]
- Arbelaiz, A.; Fernández, B.; Cantero, G.; Llano-Ponte, R.; Valea, A.; Mondragon, I. Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1637–1644. [Google Scholar] [CrossRef]
- Mohebby, B.; Fallah-Moghadam, P.; Ghotbifar, A.R.; Kazemi-Najafi, S. Influence of maleic-anhydride-polypropylene (MAPP) on wettability of polypropylene/wood flour/glass fiber hybrid composites. J. Agric. Sci. Technol. 2011, 13, 877–884. [Google Scholar]
- Zhu, J.; Zhu, H.; Njuguna, J.; Abhyankar, H. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 2013, 6, 5171–5198. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, X.; Dai, G. Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour-filled polypropylene composites. J. Appl. Polym. Sci. 2002, 85, 2824–2832. [Google Scholar] [CrossRef]
- Lopez, J.P.; Mutje, P.; Carvalho, A.J.F.; Curvelo, A.A.S.; Girones, J. Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Ind. Crop. Prod. 2013, 44, 300–305. [Google Scholar] [CrossRef]
- Stevulova, N.; Cigasova, J.; Purcz, P.; Schwarzova, I.; Kacik, F.; Geffert, A. Water absorption behavior of hemp hurds composites. Materials 2015, 8, 2243–2257. [Google Scholar] [CrossRef] [Green Version]
Condition Parameters | MAPP (%) | Fiber Content (%) | M∞ (%) | n | k (10−4 s−1/2) | D (10−13 m2∙s−1) | Dc (10−13 m2∙s−1) |
---|---|---|---|---|---|---|---|
23 °C, 50% HR | 0 | 20 | 0.22 | 0.52 | 3.23 | 3.29 | 1.51 |
30 | 0.32 | 0.57 | 1.60 | 3.41 | 1.56 | ||
40 | 0.50 | 0.46 | 8.24 | 3.75 | 1.72 | ||
50 | 0.64 | 0.53 | 2.96 | 4.59 | 2.10 | ||
6 | 20 | 0.19 | 0.44 | 1.08 | 2.03 | 9.30 | |
30 | 0.29 | 0.55 | 1.83 | 2.65 | 1.21 | ||
40 | 0.41 | 0.48 | 1.08 | 3.26 | 1.50 | ||
50 | 0.46 | 0.47 | 1.04 | 3.63 | 1.66 | ||
23 °C, water immersion | 0 | 20 | 2.05 | 0.50 | 5.61 | 4.83 | 2.21 |
30 | 4.57 | 0.58 | 1.92 | 6.73 | 3.09 | ||
40 | 6.82 | 0.52 | 4.60 | 9.19 | 4.21 | ||
50 | 8.70 | 0.56 | 3.49 | 1.27 | 5.83 | ||
6 | 20 | 2.03 | 0.47 | 8.25 | 4.72 | 2.17 | |
30 | 3.72 | 0.52 | 3.96 | 5.38 | 2.47 | ||
40 | 6.61 | 0.57 | 2.56 | 7.61 | 3.49 | ||
50 | 8.24 | 0.58 | 2.09 | 7.96 | 3.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Díaz, D.; Villar-Ribera, R.; Espinach, F.X.; Julián, F.; Hernández-Abad, V.; Delgado-Aguilar, M. Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites. Materials 2020, 13, 1079. https://doi.org/10.3390/ma13051079
Hernández-Díaz D, Villar-Ribera R, Espinach FX, Julián F, Hernández-Abad V, Delgado-Aguilar M. Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites. Materials. 2020; 13(5):1079. https://doi.org/10.3390/ma13051079
Chicago/Turabian StyleHernández-Díaz, David, Ricardo Villar-Ribera, Francesc X. Espinach, Fernando Julián, Vicente Hernández-Abad, and Marc Delgado-Aguilar. 2020. "Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites" Materials 13, no. 5: 1079. https://doi.org/10.3390/ma13051079
APA StyleHernández-Díaz, D., Villar-Ribera, R., Espinach, F. X., Julián, F., Hernández-Abad, V., & Delgado-Aguilar, M. (2020). Impact Properties and Water Uptake Behavior of Old Newspaper Recycled Fibers-Reinforced Polypropylene Composites. Materials, 13(5), 1079. https://doi.org/10.3390/ma13051079