Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Catalyst
2.2. NO Decomposition Evaluation Experiment
2.3. Characterization of the Catalyst
3. Results and Discussion
3.1. NO Decomposition Activity of Different Catalysts
3.2. Characterization Results of the Catalysts
3.2.1. Structural Characteristics
3.2.2. H2-TPR
3.2.3. XPS
3.2.4. NO-TPD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ma, M.; Ma, X.; Cui, S.; Liu, T.; Tian, Y.; Wang, Y. Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials 2019, 12, 3654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, R.; Chen, X.; Tong, M.; Kang, W.; Guo, S.; Zhou, Y.; Lu, J. Simultaneous Removal of NO and SO2 from Flue Gas by Ozone Oxidation and NaOH Absorption. Ind. Eng. Chem. Res. 2014, 53, 6450–6456. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, X.; Huang, T.; Shen, K.; Lu, B. In Situ DRIFTS Studies of NH3-SCR Mechanism over V2O5-CeO2/TiO2-ZrO2 Catalysts for Selective Catalytic Reduction of NOx. Materials 2018, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Shen, M.; Wang, J.; Wang, J.; Zhai, Y. New Insights into the Role of WO3 in Improved Activity and Ammonium Bisulfate Resistance for NO Reduction with NH3 over V–W/Ce/Ti Catalyst. Ind. Eng. Chem. Res. 2018, 57, 8424–8435. [Google Scholar] [CrossRef]
- Cheng, T.; Luo, L.; Yang, L.; Fan, H.; Wu, H. Formation and Emission Characteristics of Ammonium Sulfate Aerosols in Flue Gas Downstream of Selective Catalytic Reduction. Energy Fuels 2019, 33, 7861–7868. [Google Scholar] [CrossRef]
- Aylor, A.; Larsen, S.; Reimer, J.; Bell, A. An Infrared Study of NO Decomposition over Cu-ZSM-5. J. Catal. 1995, 157, 592–602. [Google Scholar] [CrossRef]
- Fritz, A.; Pitchon, V. The current state of research on automotive lean NOx catalysis. Appl. Catal. B Environ. 1997, 13, 1–25. [Google Scholar] [CrossRef]
- Shelef, M. Selective Catalytic Reduction of NOx with N-Free Reductants. Chem. Rev. 1995, 95, 209–225. [Google Scholar] [CrossRef]
- Garin, F. Mechanism of NOx decomposition. Appl. Catal. A Gen. 2001, 222, 183–219. [Google Scholar] [CrossRef]
- Ma, T.; Wang, R. Catalytic decomposition of NOx. Prog. Chem. 2008, 20, 798–810. [Google Scholar]
- Iwamoto, M.; Yahiro, H.; Mine, Y.; Kagawa, S. Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide. Chem. Lett. 1989, 18, 213–216. [Google Scholar] [CrossRef]
- Shi, C.; Song, Z.; Fu, Y.; Yang, X. Decomposition of NO over Ni2+ Modified Cu-ZSM-5 Catalysts. Environmental Science 2000, 21, 24–27. [Google Scholar]
- Parvulescu, V.; Centeno, M.A.; Grangé, P.; Delmon, B. NO Decomposition over Cu–Sm–ZSM-5 Zeolites Containing Low-Exchanged Copper. J. Catal. 2000, 191, 445–455. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tran, D.; Burton, S.D.; Szanyi, J.; Lee, J.H.; Peden, C.H. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203–209. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust. Chem. Eng. J. 2013, 225, 323–330. [Google Scholar] [CrossRef]
- Modén, B.; Da Costa, P.; Fonfé, B.; Lee, D.K.; Iglesia, E. Kinetics and Mechanism of Steady-State Catalytic NO Decomposition Reactions on Cu–ZSM5. J. Catal. 2002, 209, 75–86. [Google Scholar] [CrossRef]
- Groothaert, M.H.; Lievens, K.; Leeman, H.; Weckhuysen, B.M.; Schoonheydt, R.A. An operando optical fiber UV–vis spectroscopic study of the catalytic decomposition of NO and N2O over Cu-ZSM-5. J. Catal. 2003, 220, 500–512. [Google Scholar] [CrossRef] [Green Version]
- Schay, Z.; Knözinger, H.; Guczi, L.; Pál-Borbély, G. On the mechanism of NO decomposition on Cu-ZSM-5 catalysts. Appl. Catal. B Environ. 1998, 18, 263–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Leo, K.M.; Sarofim, A.F.; Hu, Z.; Flytzani-Stephanopoulos, M. Preparation effects on the activity of Cu-ZSM-5 catalysts for NO decomposition. Catal. Lett. 1995, 31, 75–89. [Google Scholar] [CrossRef]
- Brandenberger, S.; Kröcher, O.; Tissler, A.; Althoff, R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl. Catal. B Environ. 2010, 95, 348–357. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Zhao, H.; Li, Y. The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. Catal. Today 2015, 258, 28–34. [Google Scholar] [CrossRef]
- Liu, Y.; Song, C.; Lv, G.; Fan, C.; Li, X. Promotional Effect of Cerium and/or Zirconium Doping on Cu/ZSM-5 Catalysts for Selective Catalytic Reduction of NO by NH3. Catalysts 2018, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, M.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawa, S. Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. J. Phys. Chem. 1991, 95, 3727–3730. [Google Scholar] [CrossRef]
- Fang, S.; Fu, Y.; Lin, P. Super-quantitative exchange of copper and formation of {Cu2+-O2−-Cu2+}2+ in Cu-ZSM-5. J. Catal. 1995, 16, 208–212. [Google Scholar]
- Ganemi, B.; Björnbom, E.; Demirel, B.; Paul, J. Zeolite Cu–ZSM-5: Material characteristics and NO decomposition. Microporous Mesoporous Mater. 2000, 38, 287–300. [Google Scholar] [CrossRef]
- Cheng, X.-W.; Zhong, Y.; Wang, J.; Guo, J.; Huang, Q.; Long, Y.-C. Studies on modification and structural ultra-stabilization of natural STI zeolite. Microporous Mesoporous Mater. 2005, 83, 233–243. [Google Scholar] [CrossRef]
- Ohtsuka, H.; Tabata, T.; Okada, O.; Sabatino, L.; Bellussi, G. A study on selective reduction of NOx by propane on Co-Beta. Catal. Lett. 1997, 44, 265–270. [Google Scholar] [CrossRef]
- Shan, X.; Guan, N.; Zeng, X.; Chen, J.; Xiang, S. Studies on Cu-Containing MFI Zeolites by H2-TPR and O2-TPD. Chin. J. Chem. 2001, 22, 237–241. [Google Scholar]
- Dědecek, J.; Wichterlová, B. Role of Hydrated Cu Ion Complexes and Aluminum Distribution in the Framework on the Cu Ion Siting in ZSM-5. J. Phys. Chem. B 1997, 101, 10233–10240. [Google Scholar] [CrossRef]
- Li, Y.; Armor, J.N. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Appl. Catal. B Environ. 1993, 3, L1–L11. [Google Scholar] [CrossRef]
- D’Itri, J.L.; Sachtler, W.M.H. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catal. Lett. 1992, 16, 241–249. [Google Scholar]
- Beutel, T.; Sárkány, J.; Lei, G.-D.; Yan, J.Y.; Sachtler, W.M.H. Redox Chemistry of Cu/ZSM-5. J. Phys. Chem. 1996, 100, 845–851. [Google Scholar] [CrossRef]
- Xue, J.; Wang, X.; Qi, G.; Shen, M.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 29, 56–64. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Li, X. The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx, with NH3. Catal. Today 2017, 297, 84–91. [Google Scholar] [CrossRef]
- Da Costa, P.; Modén, B.; Meitzner, G.D.; Lee, D.K.; Iglesia, E. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM5. Phys. Chem. Chem. Phys. 2002, 4, 4590–4601. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K. Quantification and redox property of the oxygen-bridged Cu2+ dimers as the active sites for the NO decomposition over Cu-ZSM-5 catalysts. Korean J. Chem. Eng. 2004, 21, 611–620. [Google Scholar] [CrossRef]
- Torre-Abreu, C.; Ribeiro, M.F.; Henriques, C.; Delahay, G. Characterisation of CuMFI catalysts by temperature programmed desorption of NO and temperature programmed reduction. Effect of the zeolite Si/Al ratio and copper loading. Appl. Catal. B Environ. 1997, 12, 249–262. [Google Scholar] [CrossRef]
- Yahiro, H.; Nagano, T.; Yamaura, H. Direct decomposition of nitrogen monoxide over Cu-MFI containing rare-earth elements: Sm and Gd as promoter. Catal. Today 2007, 126, 284–289. [Google Scholar] [CrossRef]
- Zhang, Y.; Flytzani-Stephanopoulos, M. Hydrothermal Stability of Cerium Modified Cu-ZSM-5 Catalyst for Nitric Oxide Decomposition. J. Catal. 1996, 164, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Zhong, Q.; Deng, X. Studies on NO activity decomposed by Cu-ZSM-5 catalysts modified with rare earth Ce3+ (La3+). China Environ. Sci. 2006, 26, 395–399. [Google Scholar]
- Vennestrøm, P.N.R.; Katerinopoulou, A.; Tiruvalam, R.R.; Kustov, A.; Moses, P.G.; Concepcion, P.; Corma, A. Migration of Cu Ions in SAPO-34 and Its Impact on Selective Catalytic Reduction of NOx with NH3. ACS Catal. 2013, 3, 2158–2161. [Google Scholar] [CrossRef]
- Seo, C.-K.; Choi, B.; Kim, H.; Lee, C.-H.; Lee, C.-B. Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst. Chem. Eng. J. 2012, 191, 331–340. [Google Scholar] [CrossRef]
- De Oliveira, M.L.M.; Silva, C.M.; Moreno-Tost, R.; Farias, T.L.; Jiménez-López, A.; Rodríguez-Castellón, E. A study of copper-exchanged mordenite natural and ZSM-5 zeolites as SCR–NOx catalysts for diesel road vehicles: Simulation by neural networks approach. Appl. Catal. B Environ. 2009, 88, 420–429. [Google Scholar] [CrossRef]
- Corma, A.; Palomares, A.; Márquez, F. Determining the Nature of the Active Sites of Cu-Beta Zeolites for the Selective Catalytic Reduction (SCR) of NOx by Using a Coupled Reaction-XAES/XPS Study. J. Catal. 1997, 170, 132–139. [Google Scholar] [CrossRef]
- Zhang, W.X.; Yahiro, H.; Mizuno, N.; Iwamoto, M.; Izumi, J. Silver ion-exchanged zeolites as highly effective adsorbents for removal of NOx by pressure swing adsorption. J. Mater. Sci. Lett. 1993, 12, 1197–1198. [Google Scholar]
Sample | Cu a wt. % | Al a wt. % | Cu Exchange Degree b/% | Ce a wt. % |
---|---|---|---|---|
Cu-ZSM-5 | 1.75 | 2.86 | 51.6 | 0 |
Cu-Ce-ZSM-5 | 1.69 | 2.90 | 49.2 | 0.027 |
Sample | Surface Area/(m2/g) | Volume/(cm3/g) | Pore Size/nm | |||||
---|---|---|---|---|---|---|---|---|
BET | Micropore | Percent | Mesopore | Total | Micropore | Percent | ||
Cu-ZSM-5 | 316.6 | 241.2 | 76.2% | 75.4 | 0.170 | 0.121 | 71.5% | 2.145 |
Cu-ZSM-650 | 324.5 | 100.5 | 31.0% | 224.0 | 0.177 | 0.055 | 31.4% | 2.181 |
Cu-ZSM-750 | 295.9 | 97.7 | 33.0% | 198.2 | 0.169 | 0.050 | 29.7% | 2.287 |
Cu-ZSM-850 | 180.1 | 82.6 | 45.9% | 97.5 | 0.120 | 0.041 | 35.0% | 2.664 |
Cu-Ce-ZSM-5 | 309.5 | 238.0 | 76.9% | 71.5 | 0.164 | 0.120 | 72.9% | 2.124 |
Cu-Ce-ZSM-650 | 325.4 | 106.2 | 32.6% | 219.2 | 0.175 | 0.058 | 33.2% | 2.159 |
Cu-Ce-ZSM-750 | 273.7 | 99.8 | 36.5% | 173.9 | 0.163 | 0.051 | 31.1% | 2.384 |
Cu-Ce-ZSM-850 | 176.6 | 83.9 | 47.5% | 92.7 | 0.126 | 0.042 | 33.3% | 2.629 |
Sample | The first Reduction Peak Area Ratio | The Second Reduction Peak Area Ratio |
---|---|---|
Cu-ZSM-5 | 26.9 | 73.1 |
Cu-ZSM-650 | 38.5 | 61.5 |
Cu-ZSM-750 | 45.9 | 54.1 |
Cu-ZSM-850 | 49.3 | 50.7 |
Cu-Ce-ZSM-5 | 16.3 | 83.7 |
Cu-Ce-ZSM-650 | 18.9 | 81.1 |
Cu-Ce-ZSM-750 | 21.9 | 78.1 |
Cu-Ce-ZSM-850 | 26.2 | 73.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wang, X.; Qiao, X.; Jin, Y.; Fan, B. Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Materials 2020, 13, 888. https://doi.org/10.3390/ma13040888
Yang X, Wang X, Qiao X, Jin Y, Fan B. Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Materials. 2020; 13(4):888. https://doi.org/10.3390/ma13040888
Chicago/Turabian StyleYang, Xiao, Xiaofei Wang, Xiaolei Qiao, Yan Jin, and Baoguo Fan. 2020. "Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence" Materials 13, no. 4: 888. https://doi.org/10.3390/ma13040888
APA StyleYang, X., Wang, X., Qiao, X., Jin, Y., & Fan, B. (2020). Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Materials, 13(4), 888. https://doi.org/10.3390/ma13040888