A Novel Dry Selective Isotropic Atomic Layer Etching of SiGe for Manufacturing Vertical Nanowire Array with Diameter Less than 20 nm
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study of Atomic Layer Etching SiGe
3.2. Study of Nanowire Size and Profile Control
3.3. Study Morphology of Nanowire and Nanopillar
3.4. Material Quality and Interface Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B Adv. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Han, T. Silicon-Based Sensors for Biomedical Applications: A Review. Sens. Basel 2019, 19, 2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.F.; Chen, C.A.; Liu, S.W.; Tang, C.K. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires. Nanoscale Res. Lett. 2017, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, B.; Kim, M.H.; Baek, J.; Kim, W.; Lee, W. Highly Sensitive Hydrogen Sensors: Pd-coated Si Nanowire Arrays for Detection of Dissolved Hydrogen in Oil. Sens. Actuators, B 2018, 273, 809–814. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kang, S.Y.; Choi, S.W.; Kwon, Y.J.; Choi, M.S.; Bang, J.H.; Kim, H.W. Fabrication and gas sensing properties of vertically aligned Si nanowires. Appl. Surf. Sci. 2018, 427, 215–226. [Google Scholar] [CrossRef]
- Nuzaihan, M.; Hashim, U.; Arshad, M.M.; Kasjoo, S.R.; Rahman, S.F.A.; Ruslinda, A.R.; Shahimin, M.M. Electrical Detection of Dengue Virus (DENV) DNA Oligomer using Silicon Nanowire Biosensor with Novel Molecular Gate Control. Biosens. Bioelectron. 2016, 83, 106–114. [Google Scholar] [CrossRef]
- Tran, D.P.; Pham, T.T.T.; Wolfrum, B.; Offenhäusser, A.; Thierry, B. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization. Materials 2018, 11, 785. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhang, Z.; Zhang, Q.; Wei, Q.; Zhang, J.; Tang, S.; Yan, J. O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-k HfO2 coated silicon nanowire array. Sens. Actuators B 2020, 306, 127464. [Google Scholar] [CrossRef]
- Ebrahim, S.; Raoof, M.; Ramadan, W.; Soliman, M. New self assembly monolayer onto SiGe as a selective biosensor for single-strand DNA. Microelectron. Eng. 2016, 160, 87–93. [Google Scholar] [CrossRef]
- Chen, Y.M.; Chang, T.Y.; Lai, C.H.; Chang, K.M.; Chen, C.F.; Lai, Y.L.; Hsu, T.R. Investigation of Defect Free SiGe Nanowire Biosensor Modified by Dual Plasma Technology. J. Nanosci. Nanotechno. 2016, 16, 1454–1459. [Google Scholar] [CrossRef]
- Singh, A.; Amin, S.I.; Anand, S. Label Free Detection of Biomolecules Using SiGe ourced Dual Electrode Doping-Less Dielectrically Modulated Tunnel FET. Silicon 2020, 1–8. [Google Scholar] [CrossRef]
- Ferain, I.; Colinge, C.A.; Colinge, J.P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 2011, 479, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Loubet, N.; Hook, T.; Montanini, P. Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET. Available online: http://gen.lib.rus.ec/scimag/10.23919%2FVLSIT.2017.7998183 (accessed on 20 August 2017).
- Veloso, A.; Eneman, G.; Huynh-Bao, T. Vertical Nanowire and Nanosheet FETs: Device Features, Novel Schemes for Improved Process Control and Enhanced Mobility, Potential for Faster & More Energy Efficient Circuits. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar]
- Zhao, Z.; Li, Y.; Wang, G.; Du, A.; Li, Y.; Zhang, Q.; Wang, W. Process optimization of the Si0.7Ge0.3 Fin Formation for the STI first scheme. Semicond. Sci. Technol. 2019, 34, 125008. [Google Scholar] [CrossRef]
- Van Dal, M.J.H.; Vellianitis, G.; Doornbos, G.; Duriez, B.; Holland, M.C.; Vasen, T.; Shen, T.M. Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs. In Proceedings of the IEEE 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Puppo, F.; Doucey, M.A.; Delaloye, J.F.; Moh, T.S.; Pandraud, G.; Sarro, P.M.; Carrara, S. SiNW-FET in-Air Biosensors for High Sensitive and Specific Detection in Breast Tumor Extract. IEEE Sens. J. 2015, 16, 3374–3381. [Google Scholar] [CrossRef] [Green Version]
- Zhuge, J.; Wang, R.; Huang, R.; Zou, J.; Huang, X.; Kim, D.W.; Wang, Y. Experimental Investigation and Design Optimization Guidelines of Characteristic Variability in Silicon Nanowire CMOS Technology. In Proceedings of the IEEE 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009. [Google Scholar]
- Mastari, M.; Charlesa, M.; Bogumilowicza, Y. SiGe nano-heteroepitaxy on Si and SiGenano-pillars. Nanotechnology 2018, 29, 1–32. [Google Scholar] [CrossRef]
- Yirka, B. New nanowire transistors may help keepMoore’s Law alive. Nanoscale 2013, 5, 2437–2441. [Google Scholar]
- Yin, X.; Zhang, Y.; Zhu, H.; Wang, G.L.; Li, J.J.; Du, A.Y.; Xie, L. Vertical Sandwich Gate-All-Around Field-Effect Transistors with Self-Aligned High-k Metal Gates and Small Effective-Gate-Length Variation. IEEE Electr. Device L. 2020, 41, 8–11. [Google Scholar] [CrossRef]
- Holländer, B.; Buca, D.; Mantl, S.; Hartmann, J.M. Wet Chemical Etching of Si, Si1−xGex, and Ge inHF:H2O2:CH3COOH. J. Electrochem. Soc. 2010, 157, 643–646. [Google Scholar]
- Johnson, F.S.; Miles, D.S.; Grider, D.T.; Wortman, J.J. Selective Chemical Etching of Polycrystailine SiGe Alloys with Respect to Si and SiO2. J. Electron. Mater. 1992, 21, 805–810. [Google Scholar] [CrossRef]
- Kil, Y.H.; Yang, J.H.; Kang, S.; Jeong, T.S.; Kim, T.S.; Shim, K.H. Selective Chemical Wet Etching of Si0.8Ge0.2/Si Multilayer. J. Semicond. Tech. Sci. 2013, 13, 668–673. [Google Scholar] [CrossRef]
- Loubet, N.; Kormann, T.; Chabanne, G.; Denorme, S.; Dutartre, D. Selective etching of Si1—xGex versus Si with gaseous HCl for the formation ofadvanced CMOS devices. Thin Solid Films 2008, 517, 93–97. [Google Scholar] [CrossRef]
- Bogumilowicz, Y.; Hartmann, J.M.; Truche, R.; Campidelli, Y.; Rolland, G.; Billon, T. Chemical vapour etching of Si, SiGeand Ge with HCl; applications to theformation of thin relaxed SiGe buffers andto the revelation of threading dislocations. Semicond. Sci. Technol. 2005, 20, 127–134. [Google Scholar] [CrossRef]
- Hartmann, J.M.; Destefanis, V.; Rabill’, G. HCl selective etching of SiGe versus Si in stacks grown on (1 1 0). Semicond. Sci. Technol. 2010, 25, 105009. [Google Scholar] [CrossRef]
- Borel, S.; Arvet, C.; Bilde, J. Isotropic etching of SiGe alloys with high selectivity to similar materials. Microelectron. Eng. 2004, 73, 301–305. [Google Scholar] [CrossRef]
- Caubet, V.; Beylier, C.; Borel, S. Mechanisms of isotropic and selective etching between SiGe and Si. J. Vac. Sci. Technol. B 2006, 24, 2748–2754. [Google Scholar] [CrossRef]
- Pargon, E.; Petit-Etienne, C.; Youssef, L.; Thomachot, G.; David, S. New route for selective etching in remote plasma source: Application to thefabrication of horizontal stacked Si nanowires for gate all around devices. J. Vac. Sci. Technol. A 2019, 37, 040601. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, Y.; Zhou, N.; Wang, G.; Kong, Z.; Yang, H. Study of selective isotropic etching Si1−xGex in process of nanowiretransistors. J. Mater. Sci. Mater. Electron. 2019, 1–10. [Google Scholar]
- Radamson, H.; Simoen, E.; Luo, J.; Zhao, C. Past, Present and Future of CMOS; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Radamson, H.H.; Thylen, L. Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group 1V Elements; Elsevier: San Diego, CA, USA, 2014. [Google Scholar]
- Zhang, Q.; Tu, H.; Gu, S.; Zhang, Z.; Wang, G.; Wei, F.; Fan, Y. Influence of Rapid Thermal Annealing on Ge-Si Interdiffusion in Epitaxial Multilayer Ge0.3Si0.7/Si Superlattices with Various GeSi Thicknesses. ECS J. Solid State Sci. Technol. 2018, 7, 671–676. [Google Scholar] [CrossRef]
- Wang, G.; Abedin, A.; Moeen, M.; Kolahdouz, M.; Luo, J.; Guo, Y.; Zhao, C. MoeenMahdi. Integration of highly-strained SiGe materials in 14 nm and beyond nodes FinFETtechnology. Solid State Electron. 2018, 103, 222–228. [Google Scholar] [CrossRef]
- Wang, G.; Luo, J.; Qin, C.; Liang, R.; Xu, Y.; Liu, J.; Xu, J. Integration of Highly Strained SiGe in Source and Drain with HK and MG for 22 nm Bulk PMOS Transistors. Nanoscale Res. Lett. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanarik, K.J.; Lill, T.; Hudson, E.A.; Sriraman, S.; Tan, S.; Marks, J.; Gottscho, R.A. Overview of atomic layer etching in the semiconductor industry. J. Vac. Sci. Technol. A 2015, 33, 020802. [Google Scholar] [CrossRef] [Green Version]
- Rozé, F.; Gergaud, P.; Jaouen, N. SiGe Oxidation Kinetics and Oxide Density Measured by Resonant Soft X-ray Reflectivity. In Proceedings of the 2017 IEEE 12th Nanotechnology Materials and Devices Conference, Singapore, Singapore, 2–4 October 2017. [Google Scholar]
- Fischer, B.; Pollak, R.A.; DiStefano, T.H. Electronic structure of SiO2, SixGe1-xO2, and GeO2 from photoenussion spectroscopy. Phys. Rev. B 1977, 15, 3193–3199. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, Y.; Zhou, N.; Wang, G.; Zhang, Q.; Du, A.; Zhang, Y.; Gao, J.; Kong, Z.; Lin, H.; et al. A Novel Dry Selective Isotropic Atomic Layer Etching of SiGe for Manufacturing Vertical Nanowire Array with Diameter Less than 20 nm. Materials 2020, 13, 771. https://doi.org/10.3390/ma13030771
Li J, Li Y, Zhou N, Wang G, Zhang Q, Du A, Zhang Y, Gao J, Kong Z, Lin H, et al. A Novel Dry Selective Isotropic Atomic Layer Etching of SiGe for Manufacturing Vertical Nanowire Array with Diameter Less than 20 nm. Materials. 2020; 13(3):771. https://doi.org/10.3390/ma13030771
Chicago/Turabian StyleLi, Junjie, Yongliang Li, Na Zhou, Guilei Wang, Qingzhu Zhang, Anyan Du, Yongkui Zhang, Jianfeng Gao, Zhenzhen Kong, Hongxiao Lin, and et al. 2020. "A Novel Dry Selective Isotropic Atomic Layer Etching of SiGe for Manufacturing Vertical Nanowire Array with Diameter Less than 20 nm" Materials 13, no. 3: 771. https://doi.org/10.3390/ma13030771
APA StyleLi, J., Li, Y., Zhou, N., Wang, G., Zhang, Q., Du, A., Zhang, Y., Gao, J., Kong, Z., Lin, H., Xiang, J., Li, C., Yin, X., Li, Y., Wang, X., Yang, H., Ma, X., Han, J., Zhang, J., ... Radamson, H. H. (2020). A Novel Dry Selective Isotropic Atomic Layer Etching of SiGe for Manufacturing Vertical Nanowire Array with Diameter Less than 20 nm. Materials, 13(3), 771. https://doi.org/10.3390/ma13030771