H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Catalysts
2.3. Catalyst Characterization
2.4. Catalytic Tests
3. Results and Discussion
3.1. Catalyst Characterization
3.1.1. FT-IR Spectroscopy
3.1.2. XRD
3.1.3. Nitrogen Adsorption–Desorption
3.1.4. 31P MAS NMR Spectroscopy
3.2. Catalytic Epimerization of Aldoses
3.2.1. Catalytic Activity of xPMo/NH2-SBA-15 for Glucose Epimerization
3.2.2. Calculation of the Activation Energy
3.2.3. Catalytic Activity of 13.3PMo/NH2-SBA-15 for the Reverse Reaction
3.2.4. Reusability of the Catalyst for Glucose Epimerization
3.2.5. Catalytic Activity of 13.3PMo/NH2-SBA-15 for Other Aldoses Epimerization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.L.; Pan, J.M.; Shen, Y.T.; Shi, W.D.; Liu, C.B.; Yu, L.B. Bronsted acidic polymer nanotubes with tunable wettability toward efficient conversion of one-pot cellulose to 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2015, 3, 871–879. [Google Scholar] [CrossRef]
- Yi, X.H.; Delidovich, I.; Sun, Z.; Wang, S.T.; Wang, X.H.; Palkovits, R. A heteropoly acid ionic crystal containing Cr as an active catalyst for dehydration of monosaccharides to produce 5-HMF in water. Catal. Sci. Technol. 2015, 5, 2496–2502. [Google Scholar] [CrossRef]
- Jimenez-Morales, I.; Moreno-Recio, M.; Santamaria-Gonzalez, J.; Maireles-Torres, P.; Jimenez-Lopez, A. Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst. Appl. Catal. B Environ. 2015, 164, 70–76. [Google Scholar] [CrossRef]
- Delidovich, I.; Palkovits, R. Catalytic isomerization of biomass-derived aldoses: A review. ChemSusChem 2016, 9, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Marianou, A.A.; Michailof, C.M.; Ipsakis, D.K.; Karakoulia, S.A.; Kalogiannis, K.G.; Yiannoulakis, H.; Triantafyllidis, K.S.; Lappas, A.A. Isomerization of glucose into fructose over natural and synthetic MgO catalysts. ACS Sustain. Chem. Eng. 2018, 6, 16459–16470. [Google Scholar] [CrossRef]
- Ohara, M.; Takagaki, A.; Nishimura, S.; Ebitani, K. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Appl. Catal. A Gen. 2010, 383, 149–155. [Google Scholar] [CrossRef]
- Jiao, H.F.; Zhao, X.L.; Lv, C.X.; Wang, Y.J.; Yang, D.J.; Li, Z.H.; Yao, X.D. Nb2O5-γ-Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Yue, C.C.; Li, G.N.; Pidko, E.A.; Wiesfeld, J.J.; Rigutto, M.; Hensen, E.J.M. Dehydration of glucose to 5-hydroxymethylfurfural using Nb-doped tungstite. ChemSusChem 2016, 9, 2421–2429. [Google Scholar] [CrossRef]
- Ma, T.W.; Pai, S.B.; Zhu, Y.L.; Lin, J.S.; Shanmuganathan, K.; Du, J.F.; Wang, C.G.; Kim, H.; Newton, M.G.; Cheng, Y.C.; et al. Structure-activity relationships of 1-(2-deoxy-2-fluoro-beta-L-arabinofuranosyl)pyrimidine nucleosides as anti-hepatitis B virus agents. J. Med. Chem. 1996, 39, 2835–2843. [Google Scholar] [CrossRef]
- Takagi, Y.; Nakai, K.; Tsuchiya, T.; Takeuchi, T. A 5’-(trifluoromethyl)anthracycline glycoside: Synthesis of antitumor-active 7-O-(2,6-dideoxy-6,6,6-trifluoro-alpha-L-lyxo-hexopyranosyl)adriamycinone. J. Med. Chem. 1996, 39, 1582–1588. [Google Scholar] [CrossRef]
- Cleland, W.W. What limits the rate of an enzyme-catalyzed reaction? Acc. Chem. Res. 1975, 8, 145–151. [Google Scholar] [CrossRef]
- Samuel, J.; Tanner, M.E. Mechanistic aspects of enzymatic carbohydrate epimerization. Nat. Prod. Rep. 2002, 19, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Angyal, S.J. A short note on the epimerization of aldoses. Carbohydr. Res. 1997, 300, 279–281. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Saravanamurugan, S.; Riisager, A. Glucose isomerization by enzymes and chemo-catalysts: Status and current advances. ACS Catal. 2017, 7, 3010–3029. [Google Scholar] [CrossRef]
- Dewit, G.; Kieboom, A.P.G.; Vanbekkum, H. Enolization and isomerization of monosaccharides in aqueous, alkaline-solution. Carbohydr. Res. 1979, 74, 157–175. [Google Scholar] [CrossRef]
- Moliner, M.; Roman-Leshkov, Y.; Davis, M.E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl. Acad. Sci. USA 2010, 107, 6164–6168. [Google Scholar] [CrossRef]
- Gunther, W.R.; Wang, Y.R.; Ji, Y.W.; Michaelis, V.K.; Hunt, S.T.; Griffin, R.G.; Roman-Leshkov, Y. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef]
- Bermejo-Deval, R.; Orazov, M.; Gounder, R.; Hwang, S.J.; Davis, M.E. Active sites in Sn-Beta for glucose isomerization to fructose and epimerization to mannose. ACS Catal. 2014, 4, 2288–2297. [Google Scholar] [CrossRef]
- Bilik, V. Reactions of saccharides catalyzed by molybdate ions. 2. Epimerization of D-glucose and D-mannose. Chem. Zvesti 1972, 26, 183–186. [Google Scholar]
- Bilik, V. Reactions of saccharides catalyzed by molybdate ions. 4. Epimerization of aldopentose. Chem. Zvesti 1972, 26, 372–375. [Google Scholar]
- Bilik, V.; Caplovic, J. Reactions of saccharides catalyzed by molybdate ions. 7. Preparation of L-ribose, D- and L-lyxose. Chem. Zvesti 1973, 27, 547–550. [Google Scholar]
- Bilik, V.; Matulova, M. Reactions of saccharides catalyzed by molybdate ions. 42. Epimerization and the molybdate complex of the aldoses. Chem. Pap. 1990, 44, 257–265. [Google Scholar]
- Petrus, L.; Petrusova, M.; Hricoviniova, Z. The Bilik reaction. Glycoscience 2001, 215, 15–41. [Google Scholar] [CrossRef]
- Chethana, B.K.; Lee, D.; Mushrif, S.H. First principles investigation into the metal catalysed 1,2 carbon shift reaction for the epimerization of sugars. J. Mol. Catal. A Chem. 2015, 410, 66–73. [Google Scholar] [CrossRef]
- Clark, E.L.; Hayes, M.L.; Barker, R. Paramolybdate anion-exchange resin, an improved catalyst for the C-1-C-2 rearangement and 2-epimerization of aldoses. Carbohydr. Res. 1986, 153, 263–270. [Google Scholar] [CrossRef]
- Stockman, R.; Dekoninck, J.; Sels, B.F.; Jacobs, P.A. The catalytic epimerization of sugars over immobilized heptamolybdate: Comparison of resins, layered double hydroxides and mesoporous silica as support. Stud. Surf. Sci. Catal. 2005, 156, 843–850. [Google Scholar] [CrossRef]
- Kockritz, A.; Kant, M.; Walter, M.; Martin, A. Rearrangement of glucose to mannose catalysed by polymer-supported Mo catalysts in the liquid phase. Appl. Catal. A Gen. 2008, 334, 112–118. [Google Scholar] [CrossRef]
- Takagaki, A.; Furusato, S.; Kikuchi, R.; Oyama, S.T. Efficient epimerization of aldoses using layered niobium molybdates. ChemSusChem 2015, 8, 3769–3772. [Google Scholar] [CrossRef]
- Ju, F.; VanderVelde, D.; Nikolla, E. Molybdenum-based polyoxometalates as highly active and selective catalysts for the epimerization of aldoses. ACS Catal. 2014, 4, 1358–1364. [Google Scholar] [CrossRef]
- Lari, G.M.; Groninger, O.G.; Mondelli, C.; Perez-Ramirez, J.; Li, Q.; Lopez, N. Catalyst and process design for the continuous manufacture of rare sugar alcohols by epimerization-hydrogenation of aldoses. ChemSusChem 2016, 9, 3373. [Google Scholar] [CrossRef]
- Rafiee, E.; Eavani, S. Heterogenization of heteropoly compounds: A review of their structure and synthesis. RSC Adv. 2016, 6, 46433–46466. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Huo, Q.S.; Feng, J.L.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Sutra, P.; Brunel, D. Preparation of MCM-41 type silica-bound manganese(III) Schiff-base complexes. Chem. Commun. 1996, 2485–2486. [Google Scholar] [CrossRef]
- Kim, H.; Jung, J.C.; Yeom, S.H.; Lee, K.Y.; Yi, J.; Song, I.K. Immobilization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica. Mater. Res. Bull. 2007, 42, 2132–2142. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, H.; Ren, Y.H.; Wang, C.; Weng, Z.W.; Yue, B.; He, H.Y. Construction of g-C3N4-mNb2O5 composites with enhanced visible light photocatalytic activity. Nanomaterials 2018, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Jin, Q.Z.; Shan, L.; Liu, Y.F.; Wang, X.G.; Huang, J.H. H3PW12O40 immobilized on silylated palygorskite and catalytic activity in esterification reactions. Appl. Clay. Sci. 2010, 47, 229–234. [Google Scholar] [CrossRef]
- Chen, C.; Xu, J.; Zhang, Q.H.; Ma, H.; Miao, H.; Zhou, L.P. Direct synthesis of bifunctionalized hexagonal mesoporous silicas and its catalytic performance for aerobic oxidation of cyclohexane. J. Phys. Chem. C 2009, 113, 2855–2860. [Google Scholar] [CrossRef]
- Villanneau, R.; Marzouk, A.; Wang, Y.; Ben Djamaa, A.; Laugel, G.; Proust, A.; Launay, F. Covalent grafting of organic-inorganic polyoxometalates hybrids onto mesoporous SBA-15: A key step for new anchored homogeneous catalysts. Inorg. Chem. 2013, 52, 2958–2965. [Google Scholar] [CrossRef]
- Kharat, A.N.; Moosavikia, S.; Jahromi, B.T.; Badiei, A. Liquid phase hydroxylation of benzene to phenol over vanadium substituted Keggin anion supported on amine functionalized SBA-15. J. Mol. Catal. A Chem. 2011, 348, 14–19. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef]
- Ghanbari-Siahkali, A.; Philippou, A.; Dwyer, J.; Anderson, M.W. The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Appl. Catal. A Gen. 2000, 192, 57–69. [Google Scholar] [CrossRef]
- Raj, N.K.K.; Deshpande, S.S.; Ingle, R.H.; Raja, T.; Manikandan, P. Heterogenized molybdovanadophosphoric acid on amine-functionalized SBA-15 for selective oxidation of alkenes. Catal. Lett. 2004, 98, 217–223. [Google Scholar] [CrossRef]
- Carraher, J.M.; Fleitman, C.N.; Tessonnier, J.P. Kinetic and Mechanistic Study of Glucose Isomerization Using Homogeneous Organic Bronsted Base Catalysts in Water. ACS Catal. 2015, 5, 3162–3173. [Google Scholar] [CrossRef]
- Liu, C.; Carraher, J.M.; Swedberg, J.L.; Herndon, C.R.; Fleitman, C.N.; Tessonnier, J.P. Selective base-catalyzed isomerization of glucose to fructose. ACS Catal. 2014, 4, 4295–4298. [Google Scholar] [CrossRef]
- Kamada, M.; Kominami, H.; Kera, Y. Deposition and interaction of phosphododecatungstate on a silica gel surface modified with a silane coupling agent having anilino groups. J. Colloid. Interface Sci. 1996, 182, 297–300. [Google Scholar] [CrossRef]
- Angyal, S.J. The composition and conformation of sugars in solution. Angew. Chem. Int. Ed. Engl. 1969, 8, 157–166. [Google Scholar] [CrossRef]
- Delidovich, I.; Hoffmann, A.; Willms, A.; Rose, M. Porous tin-organic frameworks as selective epimerization catalysts in aqueous solutions. ACS Catal. 2017, 7, 3792–3798. [Google Scholar] [CrossRef]
- Rellan-Pineiro, M.; Garcia-Rates, M.; Lopez, N. A mechanism for the selective epimerization of the glucose mannose pair by Mo-based compounds: Towards catalyst optimization. Green Chem. 2017, 19, 5932–5939. [Google Scholar] [CrossRef]
- Hayes, M.L.; Pennings, N.J.; Serianni, A.S.; Barker, R. Epimerization of aldoses by molybdate involving a novel rearrangement of the carbon skeleton. J. Am. Chem. Soc. 1982, 104, 6764–6769. [Google Scholar] [CrossRef]
Samples | Nitrogen Content a (wt%) | Molybdenum Content b (wt%) | SBET (m2·g−1) | Dpore (nm) | Vpore (cm3·g−1) |
---|---|---|---|---|---|
SBA-15 | - | - | 599 | 5.5 | 0.80 |
NH2-SBA-15 | 1.6 | - | 343 | 5.1 | 0.54 |
3.3PMo/NH2-SBA-15 | 1.1 | 0.6 | 337 | 5.1 | 0.53 |
6.7PMo/NH2-SBA-15 | 1.1 | 1.4 | 326 | 5.1 | 0.53 |
10PMo/NH2-SBA-15 | 1.1 | 3.0 | 304 | 5.1 | 0.51 |
13.3PMo/NH2-SBA-15 | 1.2 | 5.4 | 286 | 5.1 | 0.50 |
16.7PMo/NH2-SBA-15 | 1.1 | 6.3 | 267 | 5.1 | 0.46 |
Entry | Catalyst | Glucose Conversion (%) | Mannose Yield b (%) | Mannose Selectivity (%) | Fructose Yield (%) | Fructose Selectivity (%) |
---|---|---|---|---|---|---|
1 | −c | 0 | 0 | 0 | 0 | 0 |
2 | SBA-15 | 0 | 0 | 0 | 0 | 0 |
3 | NH2-SBA-15 | 8.9 ± 0.1 | 0.5 ± 0.1 | 5.6 | 3.4 ± 0.1 | 38.2 |
4 | 3.3PMo/NH2-SBA-15 | 6.8 ± 0.2 | 2.0 ± 0.1 | 29.4 | 0 | 0 |
5 | 6.7PMo/NH2-SBA-15 | 7.4 ± 0.1 | 3.8 ± 0.1 | 51.4 | 0 | 0 |
6 | 10PMo/NH2-SBA-15 | 27.2 ± 0.2 | 22.9 ± 0.3 | 84.2 | 0 | 0 |
7 | 13.3PMo/NH2-SBA-15 | 34.8 ± 0.2 | 29.8 ± 0.1 | 85.6 | 0 | 0 |
8 | 16.7PMo/NH2-SBA-15 | 35.3 ± 0.1 | 29.7 ± 0.1 | 84.1 | 0 | 0 |
Entry | Sugar | Conversion (%) | Epimer Yield (%) | Epimer Selectivity (%) |
---|---|---|---|---|
1 | Glucose | 34.8 ± 0.2 | 29.8 ± 0.1 | 85.6 |
2 | Mannose | 66.2 ± 0.1 | 60.5 ± 0.1 | 91.4 |
3 | Arabinose | 27.7 ± 0.2 | 15.9 ± 0.3 | 57.4 |
4 | Xylose | 44.6 ± 0.1 | 33.3 ± 0.2 | 74.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, M.; Shang, J.; Ren, Y.; Yue, B.; He, H. H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization. Materials 2020, 13, 507. https://doi.org/10.3390/ma13030507
Wang H, Wang M, Shang J, Ren Y, Yue B, He H. H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization. Materials. 2020; 13(3):507. https://doi.org/10.3390/ma13030507
Chicago/Turabian StyleWang, Hui, Meiyin Wang, Jining Shang, Yuanhang Ren, Bin Yue, and Heyong He. 2020. "H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization" Materials 13, no. 3: 507. https://doi.org/10.3390/ma13030507
APA StyleWang, H., Wang, M., Shang, J., Ren, Y., Yue, B., & He, H. (2020). H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose Epimerization. Materials, 13(3), 507. https://doi.org/10.3390/ma13030507