Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes
Abstract
:1. Introduction
2. Results
2.1. General Characterization
2.2. Structure of Complex 4
2.3. Photophysical Studies
2.4. Electrical Properties
3. Materials and Methods
3.1. Materials
3.2. Thin Films Preparations and Studies
3.3. Synthesis of Target Complexes
3.4. X-ray Structural Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amgar, D.; Aharon, S.; Etgar, L. Inorganic and Hybrid Organo-Metal Perovskite Nanostructures: Synthesis, Properties, and Applications. Adv. Funct. Mater. 2016, 26, 8576–8593. [Google Scholar] [CrossRef]
- Haas, K.L.; Franz, K.J. Application of Metal Coordination Chemistry To Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Huang, C.; Li, F. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 2011, 40, 2508–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Roopa; Bhalla, V.; Kumar, M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord. Chem. Rev. 2021, 427, 213550. [Google Scholar] [CrossRef]
- Baggaley, E.; Weinstein, J.A.; Williams, J.A.G. Lighting the way to see inside the live cell with luminescent transition metal complexes. Coord. Chem. Rev. 2012, 256, 1762–1785. [Google Scholar] [CrossRef]
- Ma, D.-L.; Ma, V.P.-Y.; Chan, D.S.-H.; Leung, K.-H.; He, H.-Z.; Leung, C.-H. Recent advances in luminescent heavy metal complexes for sensing. Coord. Chem. Rev. 2012, 256, 3087–3113. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Gunasekar, K.; Kim, H.; Cho, A.N.; Park, N.G.; Kim, S.; Kim, B.J.; Nishikubo, R.; Saeki, A.; Song, M. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers. Adv. Mater. 2017, 29, 1700183. [Google Scholar] [CrossRef]
- Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M.P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915–1016. [Google Scholar] [CrossRef]
- Jou, J.-H.; Kumar, S.; Agrawal, A.; Lia, T.-H.; Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 2015, 3, 2974. [Google Scholar] [CrossRef]
- Pashaei, B.; Karimi, S.; Shahroosvand, H.; Abbasi, P.; Pilkington, M.; Bartolotta, A.; Fresta, E.; Fernandez-Cestau, J.; Costa, R.D.; Bonaccorso, F. Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chem. Soc. Rev. 2019, 48, 5033–5139. [Google Scholar]
- Pasha, S.S.; Yadav, H.R.; Choudhury, A.R.; Laskar, I.R. Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: Study of mechanoluminescence and sensitive Zn(II) sensing. J. Mater. Chem. C 2017, 5, 9651–9658. [Google Scholar] [CrossRef]
- Minei, P.; Fanizza, E.; Rodrıguez, A.M.; Garcıa, A.B.M.; Cimino, P.; Pavone, M.; Pucci, A. Cost-effective solar concentrators based on red fluorescent Zn(II)-salicylaldiminato complex. RSC Adv. 2016, 6, 17474–17482. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jingjing, Q.; Wang, X.; Zhang, Z.; Chen, Y.; Huang, X.; Huang, W. Two-dimensional light-emitting materials: Preparation, properties and applications. Chem. Soc. Rev. 2018, 47, 6128–6174. [Google Scholar] [CrossRef] [PubMed]
- Dumur, F.; Contal, E.; Wantz, G.; Gigmes, D. Photoluminescence of Zinc Complexes: Easily Tunable Optical Properties by Variation of the Bridge between the Imido Groups of Schiff Base Ligands. Eur. J. Inorg. Chem. 2014, 2014, 4186–4198. [Google Scholar] [CrossRef]
- Yan, X.; Song, X.; Mu, X.; Wang, Y. Mechanochromic luminescence based on a phthalonitrile-bridging salophen zinc (II) complex. New J. Chem. 2019, 43, 15886–15891. [Google Scholar] [CrossRef]
- Xie, D.; Jing, J.; Cai, Y.-B.; Tang, J.; Chen, J.-J.; Zhang, J.-L. Construction of an orthogonal ZnSalen/Salophen library as a colour palette for one- and two-photon live cell imaging. Chem. Sci. 2014, 5, 2318–2327. [Google Scholar] [CrossRef]
- Gusev, A.; Shul’gin, V.; Braga, E.; Zamnius, E.; Starova, G.; Lyssenko, K.; Eremenko, I.; Linert, W. Luminescent properties of zinc complexes of 4-formylpyrazolone based azomethine ligands: Excitation-dependent emission in solution. J. Lumin. 2018, 202, 370–376. [Google Scholar] [CrossRef]
- Burlov, A.S.; Koshchienko, Y.V.; Makarova, N.I.; Kuz’menko, T.A.; Chesnokova, V.V.; Kiskin, M.A.; Nikolaevskii, S.A.; Garnovskii, D.A.; Uraev, A.I.; Vlasenko, V.G.; et al. Mixed-ligand Zn(II) complexes of 1-phenyl-3-methyl-4-formylpyrazole-5-one and various aminoheter-ocycles: Synthesis, structure and photoluminescence properties. Synth. Met. 2016, 220, 543–550. [Google Scholar] [CrossRef]
- Gusev, A.N.; Kiskin, M.A.; Braga, E.V.; Chapran, M.; Wiosna-Salyga, G.; Baryshnikov, G.V.; Minaev, V.A.; Minaev, B.F.; Ivaniuk, K.; Stakhira, P.; et al. Novel Zinc Complex with an Ethylenediamine Schiff Base for High-Luminance Blue Fluorescent OLED Applications. J. Phys. Chem. C 2019, 123, 11850–11859. [Google Scholar] [CrossRef]
- Gusev, A.N.; Shul’gin, V.F.; Konnic, O.V.; Meshkova, S.B.; Aleksandrov, G.G.; Kiskin, M.A.; Eremenko, I.L.; Linert, W. New Zn complexes based on 1,2,4-triazoles: Synthesis, structure and luminescence. Inorg. Chim. Acta. 2011, 376, 509–514. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B. The Role of Zinc(II) Ion in Fluorescence Tuning of Tridentate Pincers: A Review. Molecules 2020, 25, 4984. [Google Scholar] [CrossRef]
- Erxleben, A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg. Chim. Acta 2018, 472, 40. [Google Scholar] [CrossRef]
- Kotova, O.V.; Eliseeva, S.V.; Averjushkin, A.S.; Lepnev, L.S.; Vaschenko, A.A.; Rogachev, A.Y.; Vitukhnovskii, A.G.; Kuzmina, N.P. Zinc(II) complexes with Schiff bases derived from ethylenediamine and salicylaldehyde: The synthesis and photoluminescent properties. Russ. Chem. Bull. Int. Ed. 2008, 57, 1880–1889. [Google Scholar] [CrossRef]
- Marchetti, F.; Pettinari, C.; di Nicola, C.; Tombesi, A.; Pettinari, R. Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coord. Chem. Rev. 2019, 401, 213069. [Google Scholar] [CrossRef]
- Panunzi, B.; Diana, R.; Caruso, U. A Highly Efficient White Luminescent Zinc (II) Based Metallopolymer by RGB Approach. Polymers 2019, 11, 1712. [Google Scholar] [CrossRef] [Green Version]
- Gusev, A.N.; Mazinov, A.S.; Tyutyunik, A.S.; Gurchenko, V.S. Spectral and conductive properties of film heterostructures based on fullerene-containing material and 4-methylphenylhydrazone N-isoamilisatine. RENSIT 2019, 11, 331–336. [Google Scholar] [CrossRef]
- Gusev, A.N.; Mazinov, A.S.; Shevchenko, A.I.; Tyutyunik, A.S.; Gurchenko, V.S.; Braga, E.V. The Voltage–Current Characteristics and Photoelectric Effect of Fullerene C60–N-Isoamylisatin 4-Methylphenylhydrazone Heterostructures. Tech. Phys. Lett. 2019, 45, 997–1000. [Google Scholar] [CrossRef]
- Demirezen, S.; Sönmez, Z.; Aydemir, U.; Altındal, S. Effect of series resistance and interface states on the I–V, C–V and G/ω–V characteristics in Au/Bi-doped polyvinyl alcohol (PVA)/n-Si Schottky barrier diodes at room temperature. Curr. Appl. Phys. 2020, 12, 266–272. [Google Scholar] [CrossRef]
- Shah, J.M.; Li, Y.-L.; Gessman, T.; Schubert, E.F. Experimental analysis and theoretical model for anomalously high ideality factors (n2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 2003, 94, 2627. [Google Scholar] [CrossRef] [Green Version]
- Sasikumar, K.; Bharathikannan, R.; Chandrasekaran, J.; Raja, M. Effect of Organic Additives on the Characteristics of Al/Organic Additive:ZrO2/p-Si Metal–Insulator-Semiconductor (MIS) Type Schottky Barrier Diodes. J. Inorg. Organomet. Polym. Mater. 2019, 30, 564–572. [Google Scholar] [CrossRef]
- De Leeuw, D.M.; Lous, E.J. Metal-insulator-semiconductor Schottky-type diodes of doped thiophene oligomers. Synth. Met. 1994, 65, 45–53. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: NewYork, NY, USA, 1981. [Google Scholar]
- Tüzün Özmen, Ö.; Yağlıoğlu, E. Electrical and interfacial properties of Au/P3HT:PCBM/n-Si Schottky barrier diodes at room temperature. Mater. Sci. Semicond. Process. 2014, 26, 448–454. [Google Scholar] [CrossRef]
- Dhifaoui, H.; Aloui, W.; Bouazizi, A. Optical, electrochemical and electrical properties of p-N,N-dimethyl-amino-benzylidene-malononitrile thin films. Mater. Res. Express 2020, 7, 045101. [Google Scholar] [CrossRef]
- Pandey, R.K.; Singh, A.K.; Prakash, R. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode. AIP Adv. 2013, 3, 122120. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Ghosh, K.; Kahol, P.K. Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Curr. Appl. Phys. 2009, 9, 933–936. [Google Scholar] [CrossRef]
- Zhu, M.; Cui, T.; Varahramyan, K. Experimental and theoretical investigation of MEH-ppv based Schottky diodes. Microelectron. Eng. 2004, 75, 269–274. [Google Scholar] [CrossRef]
- Rathore, P.; Negi, C.M.S.; Verma, A.S.; Singh, A.; Chauhan, G.; Inigo, A.R.; Gupta, S.K. Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene) (P3HT): Multiwall carbon nanotube (MWCNT) composite-based devices. Mater. Res. Express 2017, 4, 085905. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
Substance | Absorbance λmax (nm) | Emission λmax (nm) | Quantum Yield % | Lifetime ns | CIE Coordinates ** |
---|---|---|---|---|---|
HL1 | 329 | 592 | 2.1 | 4.1 | - |
1 | 338 | 474 | 23.6 | 12.8 | 0.175; 0.209 |
HL2 | 333 | 604 | 1.81 | 4.5 | - |
2 | 340 | 533 | 11.2 | 9.0 | 0.348; 0.530 |
HL3 | 326 | 580 | 1.2 | 4.3 | - |
3 | 335 | 495, 508 | 21.1 | 9.5 | 0.240; 0.378 |
HL4 | 337 | 601 | 2.2 | 5.1 | - |
4 | 346, 358 | 470 (sh *) 523 | 49.2 | 10.8 | 0.200; 0.304 |
HL5 | 338 | 598 | 1.6 | 4.8 | - |
5 | 347 | 490 | 30.9 | 10.2 | 0.204; 0.297 |
HL6 | 383 | 615 | 1.3 | 4.0 | - |
6 | 390 | 515 | 12.2 | 7.8 | 0.284; 0.645 |
HL7 | 285, 377 | 621 | 0.4 | 4.1 | - |
7 | 372 | 577 | 3.1 | 6.5 | 0.485; 0.505 |
Diode | Barrier Height ΦB (eV) | Ideality Factor η | Series Resistance Rs (MΩ) | Shunt Resistance Rsh (TΩ) | Slope Value m1 | Slope Value m2 | Slope Value m3 |
---|---|---|---|---|---|---|---|
Al/2/ITO | 0.88 | 3.86 | 0.62 | 0.08 | 0.25 | 2.24 | 4.51 |
Al/4/ITO | 0.85 | 4.39 | 0.2 | 0.04 | 0.56 | 1.86 | - |
Al/6/ITO | 1.07 | 2.69 | 48.9 | 145 | 0.95 | 2.5 | 4.92 |
Al/7/ITO | 0.95 | 3.57 | 3.98 | 1.76 | 0.75 | 2.02 | 3.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusev, A.; Braga, E.; Tyutyunik, A.; Gurchenko, V.; Berezovskaya, M.; Kryukova, M.; Kiskin, M.; Linert, W. Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes. Materials 2020, 13, 5698. https://doi.org/10.3390/ma13245698
Gusev A, Braga E, Tyutyunik A, Gurchenko V, Berezovskaya M, Kryukova M, Kiskin M, Linert W. Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes. Materials. 2020; 13(24):5698. https://doi.org/10.3390/ma13245698
Chicago/Turabian StyleGusev, Alexey, Elena Braga, Andrey Tyutyunik, Vladimir Gurchenko, Maria Berezovskaya, Mariya Kryukova, Mikhail Kiskin, and Wolfgang Linert. 2020. "Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes" Materials 13, no. 24: 5698. https://doi.org/10.3390/ma13245698
APA StyleGusev, A., Braga, E., Tyutyunik, A., Gurchenko, V., Berezovskaya, M., Kryukova, M., Kiskin, M., & Linert, W. (2020). Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes. Materials, 13(24), 5698. https://doi.org/10.3390/ma13245698