Tuning the Magnetism in Boron-Doped Strontium Titanate
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Magnetic Property
3.2. Structure
3.3. Electronic Structure
3.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Venkatesan, M.; Fitzgerald, C.B.; Lunney, J.G.; Coey, J.M.D. Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 2004, 93, 177206. [Google Scholar] [CrossRef] [PubMed]
- Gacic, M.; Jakob, G.; Herbort, C.; Adrian, H. Magnetism of Co-doped ZnO thin films. Phys. Rev. B 2007, 75, 205206. [Google Scholar] [CrossRef]
- Jung, S.W.; An, S.-J.; Yi, G.-C.; Jung, C.U.; Lee, S.-I.; Cho, S. Ferromagnetic properties of Zn1−xMnxO epitaxial thin films. Appl. Phys. Lett. 2002, 80, 4561–4563. [Google Scholar] [CrossRef]
- Norton, D.P.; Theodoropoulou, N.A.; Hebard, A.F.; Budai, J.D.; Boatner, L.A.; Pearton, S.J.; Wilson, R.G. Properties of Mn-Implanted BaTiO3, SrTiO3, and KTaO3. Electrochem. Solid-State Lett. 2003, 6, G19–G21. [Google Scholar] [CrossRef]
- Kim, Y.J.; Thevuthasan, S.; Droubay, T.; Lea, A.S.; Wang, C.M.; Shutthanandan, V.; Chambers, S.A.; Sears, R.P.; Taylor, B.; Sinkovic, B. Growth and properties of molecular beam epitaxially grown ferromagnetic Fe-doped TiO2 rutile films on TiO2(110). Appl. Phys. Lett. 2004, 84, 3531–3533. [Google Scholar] [CrossRef]
- Wang, Y.X.; Liu, H.; Li, Z.Q.; Zhang, X.X.; Zheng, R.K.; Ringer, S.P. Role of structural defects on ferromagnetism in amorphous Cr-doped TiO2 films. Appl. Phys. Lett. 2006, 89, 042511–042513. [Google Scholar] [CrossRef]
- Shutthanandan, V.; Thevuthasan, S.; Heald, S.M.; Droubay, T.; Engelhard, M.H.; Kaspar, T.C.; McCready, D.E.; Saraf, L.; Chambers, S.A.; Mun, B.S.; et al. Room-temperature ferromagnetism in ion-implanted Co-doped TiO2(110) rutile. Appl. Phys. Lett. 2004, 84, 4466–4468. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Murakami, M.; Shono, T.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koshihara, S.; Koinuma, H. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 2001, 291, 854–856. [Google Scholar] [CrossRef]
- Han, R.; Yan, Y. Magnetism induced by Mn atom doping in SnO monolayer. Chin. Phys. B 2018, 27, 117505. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Azevedo, S.; Moraes, F.; Machado, M. Electronic structure of boron nitride nanostructures doped with a carbon atom. Eur. Phys. J. B 2009, 73, 211–214. [Google Scholar] [CrossRef]
- Pan, H.; Feng, Y.P.; Wu, Q.Y.; Huang, Z.G.; Lin, J. Magnetic properties of carbon doped CdS: A first-principles and Monte Carlo study. Phys. Rev. B 2008, 77, 125211. [Google Scholar] [CrossRef]
- Peng, X.; Ahuja, R. Non-transition-metal doped diluted magnetic semiconductors. Appl. Phys. Lett. 2009, 94, 102504. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B.; Whangbo, M.-H. On the possibility of ferromagnetism in carbon-doped anatase TiO2. Appl. Phys. Lett. 2008, 93, 132507. [Google Scholar] [CrossRef]
- Pan, H.; Yi, J.B.; Shen, L.; Wu, R.Q.; Yang, J.H.; Lin, J.Y.; Feng, Y.P.; Ding, J.; Van, L.H.; Yin, J.H. Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 2007, 99, 127201. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B. Density Functional Study of Boron-Doped Anatase TiO2. J. Phys. Chem. C 2010, 114, 19830–19834. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Lu, N.; Kan, E.; Zeng, X.C.; Wu, X.; Yang, J. Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study. J. Phys. Chem. C 2012, 116, 11336–11342. [Google Scholar] [CrossRef]
- Modak, B.; Ghosh, S.K. Enhancement of Visible Light Photocatalytic Activity of SrTiO3: A Hybrid Density Functional Study. J. Phys. Chem. C 2015, 119, 23503–23514. [Google Scholar] [CrossRef]
- Zhao, K.L.; Chen, D.; Li, D.X. Effects of N adsorption on the structural and electronic properties of SrTiO3(001) surface. Appl. Surf. Sci. 2010, 256, 6262–6268. [Google Scholar] [CrossRef]
- Crespillo, M.L.; Graham, J.T.; Agulló-López, F.; Zhang, Y.; Weber, W.J. Role of oxygen vacancies on light emission mechanisms in SrTiO3 induced by high-energy particles. J. Phys. D Appl. Phys. 2017, 50, 155303. [Google Scholar] [CrossRef]
- You, J.H.; Lee, J.H.; Okamoto, S.; Cooper, V.; Lee, H.N. Strain effects on the electronic properties in δ-doped oxide superlattices. J. Phys. D Appl. Phys. 2015, 48, 085303. [Google Scholar] [CrossRef]
- Al-Hadidi, M.; Goss, J.P.; Briddon, P.R.; Al-Hamadany, R.; Ahmed, M.; Rayson, M.J. Carbon impurities in SrTiO3 from first principles. Modell. Simul. Mater. Sci. Eng. 2015, 23, 015002. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kim, S.K.; Huang, W.; Sohn, Y. Comparable electrocatalytic performances of carbon- and Rh-loaded SrTiO3 nanoparticles. Chin. Chem. Lett. 2018, 29, 800–804. [Google Scholar] [CrossRef]
- Iwazaki, Y.; Gohda, Y.; Tsuneyuki, S. Diversity of hydrogen configuration and its roles in SrTiO3−δ. APL Mater. 2014, 2, 012103. [Google Scholar] [CrossRef]
- Breckenfeld, E.; Wilson, R.; Karthik, J.; Damodaran, A.R.; Cahill, D.G.; Martin, L.W. Effect of Growth Induced (Non)Stoichiometry on the Structure, Dielectric Response, and Thermal Conductivity of SrTiO3 Thin Films. Chem. Mater. 2012, 24, 331–337. [Google Scholar] [CrossRef]
- Liu, H.F. Effect of nitrogen and carbon doping on electronic properties of SrTiO3. Solid State Commun. 2012, 152, 2063–2065. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, Y.; Jing, Y.; Yao, Y.; Ma, J.; Sun, J. Effect of non-metal elements (B,C,N,F,P,S) mono-doping as anions on electronic structure of SrTiO3. Comput. Mater. Sci. 2013, 79, 69–74. [Google Scholar] [CrossRef]
- Maldonado, F.; Maza, L.; Stashans, A. Electronic properties of Cr-, B-doped and codoped SrTiO3. J. Phys. Chem. Solids 2017, 100, 1–8. [Google Scholar] [CrossRef]
- Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 97, 034106. [Google Scholar] [CrossRef]
- Akbar, W.; Liaqat, T.; Elahi, I.; Zulfiqar, M.; Nazir, S. Modulated electronic and magnetic properties of 3d TM-doped SrTiO3: DFT + U study. J. Magn. Magn. Mater. 2020, 500, 166325. [Google Scholar] [CrossRef]
- Okamoto, J.; Shimizu, G.; Kubo, S.; Yamada, Y.; Kitagawa, H.; Matsushita, A.; Yamada, Y.; Ishikawa, F. Thermoelectric properties of B-doped SrTiO3 singe crystal. J. Phys. Conf. Ser. 2009, 176, 012042. [Google Scholar] [CrossRef]
- Liu, C.M.; Zu, X.T.; Zhou, W.L. Photoluminescence of nitrogen doped SrTiO3. J. Phys. D Appl. Phys. 2007, 40, 7318–7322. [Google Scholar] [CrossRef]
- Ascienzo, D.; Yuan, H.; Greenbaum, S.; Bayer, T.; Maier, R.; Wang, J.-J.; Randall, C.; Dickey, E.; Zhao, H.; Ren, Y. Investigation of Electric Field–Induced Structural Changes at Fe-Doped SrTiO3 Anode Interfaces by Second Harmonic Generation. Materials 2016, 9, 883. [Google Scholar] [CrossRef] [PubMed]
- Marozau, I.; Shkabko, A.; Döbeli, M.; Lippert, T.; Logvinovich, D.; Mallepell, M.; Schneider, C.; Weidenkaff, A.; Wokaun, A. Optical Properties of Nitrogen-Substituted Strontium Titanate Thin Films Prepared by Pulsed Laser Deposition. Materials 2009, 2, 1388–1401. [Google Scholar] [CrossRef]
- Miruszewski, T.; Dzierzgowski, K.; Winiarz, P.; Wachowski, S.; Mielewczyk-Gryń, A.; Gazda, M. Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ. Materials 2020, 13, 965. [Google Scholar] [CrossRef]
- Wei, W.; Dai, Y.; Guo, M.; Yu, L.; Jin, H.; Han, S.; Huang, B. Codoping synergistic effects in N-doped SrTiO3 for higher energy conversion efficiency. Phys. Chem. Chem. Phys. 2010, 12, 7612–7619. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Liu, J.; Wang, T.; Qu, W.; Li, Z. DFT study on electronic structures and optical absorption properties of C, S cation- doped SrTiO3. Cent. Eur. J. Phys. 2009, 7, 762–767. [Google Scholar] [CrossRef]
- Li, N.; Yao, K.L. The electronic and optical properties of carbon-doped SrTiO3: Density functional characterization. AIP Adv. 2012, 2, 032135. [Google Scholar] [CrossRef]
- Humayun, M.; Xu, L.; Zhou, L.; Zheng, Z.; Fu, Q.; Luo, W. Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution. Nano Res. 2018, 11, 6391–6404. [Google Scholar] [CrossRef]
- Modak, B.; Ghosh, S.K. Exploring the role of La codoping beyond charge compensation for enhanced hydrogen evolution by Rh-SrTiO3. J. Phys. Chem. B 2015, 119, 11089–11098. [Google Scholar] [CrossRef]
- Liu, P.; Nisar, J.; Pathak, B.; Ahuja, R. Hybrid density functional study on SrTiO3 for visible light photocatalysis. Int. J. Hydrog. Energy 2012, 37, 11611–11617. [Google Scholar] [CrossRef]
- Modak, B.; Srinivasu, K.; Ghosh, S.K. A hybrid DFT based investigation of the photocatalytic activity of cation-anion codoped SrTiO3 for water splitting under visible light. Phys. Chem. Chem. Phys. 2014, 16, 24527–24535. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Raziq, F.; Humayun, M.; Zhou, W.; Qu, Y.; Wang, G.; Li, Y. Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B 2017, 219, 10–17. [Google Scholar] [CrossRef]
- Ohno, T.; Tsubota, T.; Nakamura, Y.; Sayama, K. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A 2005, 288, 74–79. [Google Scholar] [CrossRef]
- Chiang, T.H.; Lyu, H.; Hisatomi, T.; Goto, Y.; Takata, T.; Katayama, M.; Minegishi, T.; Domen, K. Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO3 Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catal. 2018, 8, 2782–2788. [Google Scholar] [CrossRef]
- Lyu, H.; Hisatomi, T.; Goto, Y.; Yoshida, M.; Higashi, T.; Katayama, M.; Takata, T.; Minegishi, T.; Nishiyama, H.; Yamada, T.; et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 2019, 10, 3196–3201. [Google Scholar] [CrossRef]
- Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef]
- Wang, S.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Effective Driving of Ag-Loaded and Al-Doped SrTiO3 under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO2 by H2O. ACS Appl. Energy Mater. 2020, 3, 1468–1475. [Google Scholar] [CrossRef]
- Dawson, J.A.; Chen, H.; Tanaka, I. Combined Ab Initio and Interatomic Potentials Based Assessment of the Defect Structure of Mn-Doped SrTiO3. J. Phys. Chem. C 2014, 118, 14485–14494. [Google Scholar] [CrossRef]
- Savinov, M.; Trepakov, V.A.; Syrnikov, P.P.; Železný, V.; Pokorný, J.; Dejneka, A.; Jastrabík, L.; Galinetto, P. Dielectric properties of Mn doped SrTiO3. J. Phys. Condens. Matter 2008, 20, 095221. [Google Scholar] [CrossRef]
- Azzoni, C.B.; Mozzati, M.C.; Paleari, A.; Massarotti, V.; Bini, M.; Capsoni, D. Magnetic evidence of different environments of manganese ions in Mn-substituted strontium titanate. Solid State Commun. 2000, 114, 617–622. [Google Scholar] [CrossRef]
- Nomura, K.; Yamakawa, S.; Kasari, M.; Koike, Y.; Nakanishi, A.; Kubuki, S.; Okazawa, A. Magnetic property and Fe Mössbauer analysis of dilute Fe and Nb codoped SrTiO3-δ(STO) perovskites. Hyperfine Interact. 2019, 241, 15. [Google Scholar] [CrossRef]
- Valant, M.; Kolodiazhnyi, T.; Arčon, I.; Aguesse, F.; Axelsson, A.-K.; Alford, N.M. The Origin of Magnetism in Mn-Doped SrTiO3. Adv. Funct. Mater. 2012, 22, 2114–2122. [Google Scholar] [CrossRef]
- Zorko, A.; Pregelj, M.; Luetkens, H.; Axelsson, A.K.; Valant, M. Intrinsic paramagnetism and aggregation of manganese dopants in SrTiO3. Phys. Rev. B 2014, 89, 094418. [Google Scholar] [CrossRef]
- Choudhury, D.; Pal, B.; Sharma, A.; Bhat, S.V.; Sarma, D.D. Magnetization in electron- and Mn-doped SrTiO3. Sci. Rep. 2013, 3, 1433. [Google Scholar] [CrossRef]
- Inaba, J.; Katsufuji, T. Large magnetoresistance in spin- and carrier-doped SrTiO3. Phys. Rev. B 2005, 72, 052408. [Google Scholar] [CrossRef]
- Bannikov, V.V.; Shein, I.R.; Kozhevnikov, V.L.; Ivanovskii, A.L. Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3. J. Magn. Magn. Mater. 2008, 320, 936–942. [Google Scholar] [CrossRef]
- Guo, Y.; Qiu, X.; Dong, H.; Zhou, X. Trends in non-metal doping of the SrTiO3 surface: A hybrid density functional study. Phys. Chem. Chem. Phys. 2015, 17, 21611–21621. [Google Scholar] [CrossRef]
- Liao, X.X.; Wang, H.-Q.; Zheng, J.-C. Tuning the Structural, Electronic, and Magnetic Properties of Strontium Titanate through Atomic Design: A Comparison Between Oxygen Vacancies and Nitrogen Doping. J. Am. Ceram. Soc. 2013, 96, 538–543. [Google Scholar] [CrossRef]
- Yang, K.; Dai, Y.; Huang, B. First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3. Appl. Phys. Lett. 2012, 100, 062409. [Google Scholar] [CrossRef]
- Cristiano, F.; Hebras, X.; Cherkashin, N.; Claverie, A.; Lerch, W.; Paul, S. Clusters formation in ultralow-energy high-dose boron-implanted silicon. Appl. Phys. Lett. 2003, 83, 5407–5409. [Google Scholar] [CrossRef][Green Version]
- Yang, K.; Dai, Y.; Huang, B.; Whangbo, M.-H. Density functional studies of the magnetic properties in nitrogen doped TiO2. Chem. Phys. Lett. 2009, 481, 99–102. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 169–186. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Feng, N.; Wang, Q.; Zheng, A.; Zhang, Z.; Fan, J.; Liu, S.B.; Amoureux, J.P.; Deng, F. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 2013, 135, 1607–1616. [Google Scholar] [CrossRef]
- Cuong, D.D.; Lee, B.; Choi, K.M.; Ahn, H.-S.; Han, S.; Lee, J. Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA + U study. Phys. Rev. Lett. 2007, 98, 115503. [Google Scholar] [CrossRef]
- Sikam, P.; Moontragoon, P.; Sararat, C.; Karaphun, A.; Swatsitang, E.; Pinitsoontorn, S.; Thongbai, P. DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3. Appl. Surf. Sci. 2018, 446, 92–113. [Google Scholar] [CrossRef]
(0,j) | GMS | Rd | ∆E | EMM | MMtot | MMB | MMTi |
---|---|---|---|---|---|---|---|
(0,1) | NM | 1.513 | 0 | ~0 | 0 | 0 | 0 |
(0,2) | FM | 4.026 | 2.335 | −0.021 | 3.94 | 0.51, 0.51 | 0.09 |
AFM | 4.023 | 2.356 | - | 0 | 0.55, −0.55 | 0 | |
(0,3) | FM | 3.896 | 2.467 | 0.002 | 1.61 | 0.24, 0.24 | 0.03 |
AFM | 3.896 | 2.465 | - | 0 | 0.24, −0.24 | 0 | |
(0,4) | FM | 4.791 | 2.379 | ~0 | 2.00 | 0.28, 0.28 | 0.03 |
AFM | 4.790 | 2.379 | - | 0 | 0.28, −0.28 | 0 | |
(0,5) | FM | 5.650 | 2.383 | 0.022 | 2.64 | 0.37, 0.37 | 0.09 |
AFM | 5.649 | 2.361 | - | 0 | 0.48, −0.48 | 0 | |
(0,6) | FM | 5.571 | 2.547 | 0.015 | 2.64 | 0.38, 0.37 | 0.07 |
AFM | 5.572 | 2.532 | - | 0.01 | 0.47, −0.47 | 0 | |
(0,7) | FM | 6.895 | 2.630 | −0.005 | 4.40 | 0.60, 0.60 | 0.16 |
AFM | 6.895 | 2.635 | - | 0 | 0.60, 0.60 | 0 |
(0,j) | ∆(Rd) | ∆(B-Ti) | ∆a | ∆b | ∆c | ∠Ti-B-Ti | ∠O-Ti-O | Charge | |
---|---|---|---|---|---|---|---|---|---|
(0,1) | −1.269 | 0.235 | 0.093 | 0.093 | 0.045 | 137.884 | 170.935 | (0.30, 1.34) | |
(0,2) | FM | 0.091 | 0.046 | 0.022 | 0.183 | 0.022 | 180.000 | 180.000 | (0.63, 0.63) |
AFM | 0.088 | 0.044 | 0.022 | 0.177 | 0.022 | 180.000 | 180.000 | ||
(0,3) | FM | −0.039 | 0.142 | −0.078 | 0.262 | 0.080 | 180.000 | 161.546 | |
AFM | −0.039 | 0.143 | −0.078 | 0.262 | 0.080 | 180.000 | 161.641 | (0.59, 0.59) | |
(0,4) | FM | −0.028 | 0.177 | 0.185 | 0.185 | −0.032 | 175.211 | 178.560 | |
AFM | −0.029 | 0.179 | 0.184 | 0.184 | −0.031 | 175.460 | 178.306 | (0.67, 0.67) | |
(0,5) | FM | 0.085 | 0.170 | −0.007 | 0.245 | 0.041 | 180.000 | 173.640 | |
AFM | 0.084 | 0.169 | −0.006 | 0.241 | 0.041 | 180.000 | 173.661 | (0.72, 0.72) | |
(0,6) | FM | 0.006 | 0.169 | 0.008 | 0.249 | 0.008 | 180.000 | 174.541 | |
AFM | 0.007 | 0.166 | 0.010 | 0.240 | 0.010 | 180.000 | 176.494 | (0.74, 0.74) | |
(0,7) | FM | 0.079 | 0.149 | 0.020 | 0.234 | 0.020 | 180.000 | 176.235 | (0.71, 0.71) |
AFM | 0.079 | 0.149 | 0.020 | 0.234 | 0.020 | 180.000 | 176.455 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Wu, M.; Wang, H.-Q.; Zheng, J.-C.; Kang, J. Tuning the Magnetism in Boron-Doped Strontium Titanate. Materials 2020, 13, 5686. https://doi.org/10.3390/ma13245686
Zeng H, Wu M, Wang H-Q, Zheng J-C, Kang J. Tuning the Magnetism in Boron-Doped Strontium Titanate. Materials. 2020; 13(24):5686. https://doi.org/10.3390/ma13245686
Chicago/Turabian StyleZeng, Hui, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng, and Junyong Kang. 2020. "Tuning the Magnetism in Boron-Doped Strontium Titanate" Materials 13, no. 24: 5686. https://doi.org/10.3390/ma13245686
APA StyleZeng, H., Wu, M., Wang, H.-Q., Zheng, J.-C., & Kang, J. (2020). Tuning the Magnetism in Boron-Doped Strontium Titanate. Materials, 13(24), 5686. https://doi.org/10.3390/ma13245686