Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Microstructure and Phase Composition
2.3. Porosity
2.4. Mechanical Properties
2.5. Electrochemical Measurements
2.6. In Vitro “Bioactivity” Tests
2.7. In Vitro Cytotoxicity Tests
3. Results and Discussion
3.1. Microstructure and Phase Composition
3.2. Mechanical Properties
3.3. Corrosion Resistance
3.3.1. Electrochemical Measurements
3.3.2. In Vitro “Bioactivity” Tests
3.4. In Vitro Cytotoxicity Testing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dabrowski, B.; Swieszkowski, W.; Godlinski, D.; Kurzydlowski, K.J. Highly porous titanium scaffolds for orthopaedic applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 95, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Li, S.H.; Van Blitterswijk, C.A.; de Groot, K. A novel porous Ti6Al4V: Characterization and cell attachment. J. Biomed. Mater. Res. Part A 2005, 73, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.; Pandit, A.; Apatsidis, D.P. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 2006, 27, 2651–2670. [Google Scholar] [CrossRef] [PubMed]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Lee, H.; Jang, T.-S.; Song, J.; Kim, H.-E.; Jung, H.-D. Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Mater. Lett. 2016, 185, 21–24. [Google Scholar] [CrossRef]
- Prymak, O.; Bogdanski, D.; Köller, M.; Esenwein, S.A.; Muhr, G.; Beckmann, F.; Donath, T.; Assad, M.; Epple, M. Morphological characterization and in vitro biocompatibility of a porous nickel–titanium alloy. Biomaterials 2005, 26, 5801–5807. [Google Scholar] [CrossRef] [PubMed]
- Školáková, A.; Novák, P.; Salvetr, P.; Moravec, H.; Šefl, V.; Deduytsche, D.; Detavernier, C. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis. Metall. Mater. Trans. A 2017, 48, 3559–3569. [Google Scholar] [CrossRef]
- Salvetr, P.; Školáková, A.; Novák, P.; Vavřík, J. Effect of Si Addition on Martensitic Transformation and Microstructure of NiTiSi Shape Memory Alloys. Metall. Mater. Trans. A 2020, 51, 4434–4438. [Google Scholar] [CrossRef]
- Salvetr, P.; Dlouhý, J.; Školáková, A.; Průša, F.; Novák, P.; Karlík, M.; Haušild, P. Influence of Heat Treatment on Microstructure and Properties of NiTi46 Alloy Consolidated by Spark Plasma Sintering. Materials 2019, 12, 4075. [Google Scholar] [CrossRef] [Green Version]
- Bednarczyk, W.; Kawałko, J.; Wątroba, M.; Gao, N.; Starink, M.J.; Bała, P.; Langdon, T.G. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2020, 776, 139047. [Google Scholar] [CrossRef]
- Ren, F.; Zhu, W.; Chu, K. Fabrication and evaluation of bulk nanostructured cobalt intended for dental and orthopedic implants. J. Mech. Behav. Biomed. Mater. 2017, 68, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Moharamzadeh, K.; Boccaccini, A.R.; Tayebi, L. Porous magnesium-based scaffolds for tissue engineering. Mater. Sci. Eng. C 2017, 71, 1253–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobyn, J.D.; Stackpool, G.J.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Jt. Surgery. Br. Vol. 1999, 81, 907–914. [Google Scholar] [CrossRef]
- Levine, B.R.; Sporer, S.; Poggie, R.A.; Della Valle, C.J.; Jacobs, J.J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006, 27, 4671–4681. [Google Scholar] [CrossRef] [PubMed]
- Čapek, J.; Machová, M.; Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater. Sci. Eng. C 2016, 69, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Khodaei, M.; Valanezhad, A.; Watanabe, I.; Yousefi, R. Surface and mechanical properties of modified porous titanium scaffold. Surf. Coat. Technol. 2017, 315, 61–66. [Google Scholar] [CrossRef]
- Gu, Y.W.; Yong, M.S.; Tay, B.Y.; Lim, C.S. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C 2009, 29, 1515–1520. [Google Scholar] [CrossRef]
- Rao, S.; Ushida, T.; Tateishi, T.; Okazaki, Y.; Asao, S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio Med. Mater. Eng. 1996, 6, 79–86. [Google Scholar] [CrossRef]
- Assad, M.; Chernyshov, A.V.; Jarzem, P.; Leroux, M.A.; Coillard, C.; Charette, S.; Rivard, C.H. Porous titanium-nickel for intervertebral fusion in a sheep model: Part 2. Surface analysis and nickel release assessment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 64, 121–129. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Hsu, S.-K.; Li, Y.-C.; Ho, W.-F. Structure and mechanical properties of as-cast Ti-Si alloys. Intermetallics 2014, 47, 11–16. [Google Scholar] [CrossRef]
- Knaislová, A.; Novák, P. Preparation of Porous Biomaterial Based on Ti-Si Alloys. Manuf. Technol. 2018, 18, 411–417. [Google Scholar] [CrossRef]
- Arifvianto, B.; Leeflang, M.A.; Zhou, J. The compression behaviors of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds with the space holder method. Powder Technol. 2015, 284, 112–121. [Google Scholar] [CrossRef]
- Daudt, N.d.F.; Bram, M.; Barbosa, A.P.C.; Laptev, A.M.; Alves, C. Manufacturing of highly porous titanium by metal injection molding in combination with plasma treatment. J. Mater. Process. Technol. 2017, 239, 202–209. [Google Scholar] [CrossRef]
- Müller, L.; Müller, F.A. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006, 2, 181–189. [Google Scholar] [CrossRef]
- ISO. 10993–5: 2009 Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. In International Organization for Standardization; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Thümmler, F.; Oberacker, R. An introduction to Powder Metallurgy; Maney Publishing for IOM3, the Institute of Materials, Minerals and Mining: London, UK, 1993. [Google Scholar]
- Pabst, W.; Gregorová, E.; Uhlířová, T. Microstructure characterization via stereological relations—A shortcut for beginners. Mater. Charact. 2015, 105, 1–12. [Google Scholar] [CrossRef]
- Massalski, T.B. Binary alloy phase diagrams. ASM Int. 1992, 3, 2874. [Google Scholar]
- Novák, P.; Kubásek, J.; Šerák, J.; Vojtěch, D.; Michalcová, A. Mechanism and kinetics of the intermediary phase formation in Ti–Al and Ti–Al–Si systems during reactive sintering. Int. J. Mater. Res. 2009, 100, 353–355. [Google Scholar] [CrossRef]
- Trambukis, J.; Munir, Z.A. Effect of Particle Dispersion on the Mechanism of Combustion Synthesis of Titanium Silicide. J. Am. Ceram. Soc. 1990, 73, 1240–1245. [Google Scholar] [CrossRef]
- Riley, D.P. Synthesis and characterization of SHS bonded Ti5Si3 on Ti substrates. Intermetallics 2006, 14, 770–775. [Google Scholar] [CrossRef]
- Riley, D.P.; Oliver, C.P.; Kisi, E.H. In-situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS). Intermetallics 2006, 14, 33–38. [Google Scholar] [CrossRef]
- Tang, H.P.; Wang, J.; Qian, M. 28-Porous titanium structures and applications. In Titanium Powder Metallurgy; Qian, M., Froes, F.H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2015; pp. 533–554. [Google Scholar] [CrossRef]
- Fatemi, A. Mechanical Properties and Testing of Metallic Materials. In Ullmann’s Encyclopedia of Industrial Chemistry; The Charleston Company: Denver, CO, USA, 2000. [Google Scholar] [CrossRef]
- Yaszemski, M.J.; Payne, R.G.; Hayes, W.C.; Langer, R.; Mikos, A.G. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996, 17, 175–185. [Google Scholar] [CrossRef]
- Oh, I.-H.; Nomura, N.; Masahashi, N.; Hanada, S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 2003, 49, 1197–1202. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Z.; Chen, G.; Cai, W.; Zhang, C.; Tao, Q.; Qu, X.; Qin, M. Oxidation behavior of low-cost CP-Ti powders for additive manufacturing via fluidization. Corros. Sci. 2021, 178, 109080. [Google Scholar] [CrossRef]
- Tao, Q.; Wang, Z.; Chen, G.; Cai, W.; Cao, P.; Zhang, C.; Ding, W.; Lu, X.; Luo, T.; Qu, X.; et al. Selective laser melting of CP-Ti to overcome the low cost and high performance trade-off. Addit. Manuf. 2020, 34, 101198. [Google Scholar] [CrossRef]
- Horkavcová, D.; Novák, P.; Fialová, I.; Černý, M.; Jablonská, E.; Lipov, J.; Ruml, T.; Helebrant, A. Titania sol-gel coatings containing silver on newly developed TiSi alloys and their antibacterial effect. Mater. Sci. Eng. C 2017, 76, 25–30. [Google Scholar] [CrossRef] [PubMed]
Sample | “Porosity by Image Analysis” (%) | “Porosity by Weight” (%) |
---|---|---|
TiSi2 | 2 ± 1 | 15 ± 3 |
TiSi2 + 20 wt.% PA | 37 ± 11 | 47 ± 1 |
Ti | 1 ± 0 | 2 ± 1 |
Ti + 20 wt.% PA | 24 ± 5 | 27 ± 1 |
Ti + 30 wt.% PA | 31 ± 3 | 35 ± 1 |
Ti + 40 wt.% PA | 46 ± 5 | 49 ± 1 |
Sample | Rp0.2 (MPa) | Rm (MPa) | E (GPa) |
---|---|---|---|
TiSi2 | 980 ± 18 | 1846 ± 153 | 18 ± 0 |
TiSi2 + 20 wt.% PA | 250 ± 52 | 291 ± 26 | 8 ± 0 |
Ti | 1039 ± 31 | 2104 ± 61 | 19 ± 0 |
Ti + 20 wt.% PA | 508 ± 13 | 686 ± 9 | 10 ± 0 |
Ti + 30 wt.% PA | 386 ± 4 | - | 9 ± 1 |
Ti + 40 wt.% PA | 233 ± 22 | - | 8 ± 0 |
Sample | µ | G (GPa) | E (GPa) |
---|---|---|---|
TiSi2 | 0.28 | 30 ± 1 | 77 ± 2 |
TiSi2 + 20 wt.% PA | 0.26 | 12 ± 1 | 30 ± 1 |
Ti | 0.33 | 44 ± 1 | 116 ± 4 |
Ti + 20 wt.% PA | 0.28 | 24 ± 1 | 61 ± 1 |
Ti + 30 wt.% PA | 0.27 | 18 ± 1 | 47 ± 1 |
Ti + 40 wt.% PA | 0.26 | 11 ± 1 | 28 ± 1 |
Sample | Rm (MPa) |
---|---|
TiSi2 | 454 ± 36 |
TiSi2 + 20 wt.% PA | 111 ± 15 |
Ti | 652 ± 31 |
Ti + 20 wt.% PA | 412 ± 0 |
Ti + 30 wt.% PA | 328 ± 21 |
Ti + 40 wt.% PA | 252 ± 35 |
Sample | Anodic Polarization | Cathodic Polarization | Rp | vcorr | ||||
---|---|---|---|---|---|---|---|---|
ba | Ecorr | jcorr | bc | Ecorr | jcorr | |||
×10−6 | ×10−6 | ×103 | ×10−3 | |||||
(V/dec) | (V/ACLE) | (A/cm2) | (V/dec) | (V/ACLE) | (A/cm2) | (Ω × cm2) | (g/cm2 × a) | |
TiSi2 | 0.68 | −0.033 | 6.1 | 0.41 | −0.020 | 5.4 | 12 | 36.8 |
TiSi2 + 20 wt.% PA | 0.90 | −0.046 | 38.1 | 0.41 | −0.073 | 35.0 | 2 | 272.1 |
Ti | 0.19 | −0.196 | 0.1 | 0.17 | −0.253 | 0.1 | 330 | 0.5 |
Ti + 20 wt.% PA | 0.43 | −0.062 | 1.3 | 0.34 | −0.069 | 0.8 | 48 | 6.8 |
Ti + 30 wt.% PA | 0.35 | −0.008 | 1.4 | 0.54 | 0.093 | 4.0 | 11 | 33.7 |
Ti + 40 wt.% PA | 0.37 | 0.045 | 5.3 | - | 0.133 | 114.3 | 1 | 573.5 |
Sample | Weight Change (g) |
---|---|
TiSi2 | −0.023 ± 0.004 |
TiSi2 + 20 wt.% PA | −0.050 ± 0.016 |
Ti | 0.001 ± 0.000 |
Ti + 40 wt.% PA | 0.003 ± 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Školáková, A.; Körberová, J.; Málek, J.; Rohanová, D.; Jablonská, E.; Pinc, J.; Salvetr, P.; Gregorová, E.; Novák, P. Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent. Materials 2020, 13, 5607. https://doi.org/10.3390/ma13245607
Školáková A, Körberová J, Málek J, Rohanová D, Jablonská E, Pinc J, Salvetr P, Gregorová E, Novák P. Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent. Materials. 2020; 13(24):5607. https://doi.org/10.3390/ma13245607
Chicago/Turabian StyleŠkoláková, Andrea, Jana Körberová, Jaroslav Málek, Dana Rohanová, Eva Jablonská, Jan Pinc, Pavel Salvetr, Eva Gregorová, and Pavel Novák. 2020. "Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent" Materials 13, no. 24: 5607. https://doi.org/10.3390/ma13245607
APA StyleŠkoláková, A., Körberová, J., Málek, J., Rohanová, D., Jablonská, E., Pinc, J., Salvetr, P., Gregorová, E., & Novák, P. (2020). Microstructural, Mechanical, Corrosion and Cytotoxicity Characterization of Porous Ti-Si Alloys with Pore-Forming Agent. Materials, 13(24), 5607. https://doi.org/10.3390/ma13245607