Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection and Randomization
2.2. Root Canal Instrumentation
2.3. Micro-CT
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bjørndal, L.; Reit, C. The annual frequency of root fillings, tooth extractions and pulp-related procedures in Danish adults during 1977–2003. Int. Endod. J. 2004, 37, 782–788. [Google Scholar] [CrossRef]
- Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. J. Appl. Phys. 1963, 34, 1475–1477. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Andreasen, G.F.; Morrow, R.E. Laboratory and clinical analyses of nitinol wire. Am. J. Orthod. 1978, 73, 142–151. [Google Scholar] [CrossRef]
- Gambarini, G.; Gerosa, R.; De Luca, M.; Garala, M.; Testarelli, L. Mechanical properties of a new and improved nickel-titanium alloy for endodontic use: An evaluation of file flexibility. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 105, 798–800. [Google Scholar] [CrossRef]
- Johnson, E.; Lloyd, A.; Kuttler, S.; Namerow, K. Comparison between a novel nickel-titanium alloy and 508 nitinol on the cyclic fatigue life of ProFile 25/.04 rotary instruments. J. Endod. 2008, 34, 1406–1409. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.-M.; Zheng, Y.-F.; Peng, B.; Haapasalo, M. Current Challenges and Concepts of the Thermomechanical Treatment of Nickel-Titanium Instruments. J. Endod. 2013, 39, 163–172. [Google Scholar] [CrossRef]
- Elnaghy, A.M.; Elsaka, S.E. Cyclic Fatigue Resistance of One Curve, 2Shape, ProFile Vortex, Vortex Blue, and RaCe Nickel-Titanium Rotary Instruments in Single and Double Curvature Canals. J. Endod. 2018, 44, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Hieawy, A.; Haapasalo, M.; Zhou, H.; Wang, Z.J.; Shen, Y. Phase Transformation Behavior and Resistance to Bending and Cyclic Fatigue of ProTaper Gold and ProTaper Universal Instruments. J. Endod. 2015, 41, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Vieira, V.T.L.; Da Silva, E.J.N.; Lopes, H.; Elias, C.N.; Moreira, E.J. Bending Resistance and Dynamic and Static Cyclic Fatigue Life of Reciproc and WaveOne Large Instruments. J. Endod. 2014, 40, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Govindjee, R.G.; Govindjee, S. Thermal phase transformation in commercial dental files. In Structural Engineering Mechanics and Materials; Report No.USB/SEMM-2015/02; Department of Civil and Environmental Engineering, University of California: Berkeley, CA, USA, 2015. [Google Scholar]
- Gao, Y.; Gutmann, J.L.; Wilkinson, K.; Maxwell, R.; Ammon, D. Evaluation of the impact of raw materials on the fatigue and mechanical properties of ProFile Vortex rotary instruments. J. Endod. 2012, 38, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Qian, W.; Abtin, H.; Gao, Y.; Haapasalo, M. Fatigue Testing of Controlled Memory Wire Nickel-Titanium Rotary Instruments. J. Endod. 2011, 37, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.N.L.; Vieira, V.T.L.; Belladonna, F.G.; Zuolo, A.D.S.; Antunes, H.D.S.; Cavalcante, D.M.; Elias, C.N.; De-Deus, G. Cyclic and Torsional Fatigue Resistance of XP-endo Shaper and TRUShape Instruments. J. Endod. 2018, 44, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Marceliano-Alves, M.; Neto, M.D.S.; Fidel, S.R.; Steier, L.; Robinson, J.P.; Pécora, J.D.; Versiani, M.A.; Marceliano-Alves, M.F.V. Shaping ability of single-file reciprocating and heat-treated multifile rotary systems: A micro-CT study. Int. Endod. J. 2015, 48, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.N.L.; Pacheco, P.T.; Pires, F.; Belladonna, F.G.; De-Deus, G. Microcomputed tomographic evaluation of canal transportation and centring ability of ProTaper Next and Twisted File Adaptive systems. Int. Endod. J. 2017, 50, 694–699. [Google Scholar] [CrossRef]
- Pasqualini, D.; Alovisi, M.; Cemenasco, A.F.; Mancini, L.; Paolino, D.S.; Bianchi, C.C.; Roggia, A.; Scotti, N.; Berutti, E. Micro–Computed Tomography Evaluation of ProTaper Next and BioRace Shaping Outcomes in Maxillary First Molar Curved Canals. J. Endod. 2015, 41, 1706–1710. [Google Scholar] [CrossRef]
- Bürklein, S.; Jäger, P.G.; Schäfer, E. Apical transportation and canal straightening with different continuously tapered rotary file systems in severely curved root canals: F6 SkyTaper and OneShape versus Mtwo. Int. Endod. J. 2017, 50, 983–990. [Google Scholar] [CrossRef]
- Schilder, H. Cleaning and shaping the root canal. Dent. Clin. N. Am. 1974, 18, 269–296. [Google Scholar]
- Peters, O.A.; Laib, A.; Göhring, T.N.; Barbakow, F. Changes in Root Canal Geometry after Preparation Assessed by High-Resolution Computed Tomography. J. Endod. 2001, 27, 1–6. [Google Scholar] [CrossRef]
- Hartmann, R.C.; Fensterseifer, M.; Peters, O.A.; De Figueiredo, J.A.P.; Gomes, M.S.; Rossi-Fedele, G. Methods for measurement of root canal curvature: A systematic and critical review. Int. Endod. J. 2019, 52, 169–180. [Google Scholar] [CrossRef]
- Thomas, J.P.; Lynch, M.; Paurazas, S.; Askar, M. Micro-computed Tomographic Evaluation of the Shaping Ability of WaveOne Gold, TRUShape, EdgeCoil, and XP-3D Shaper Endodontic Files in Single, Oval-shaped Canals: An In Vitro Study. J. Endod. 2020, 46, 244–251.e1. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, B.; Cox, T.C.; Heddaya, B.; Flake, N.M.; Johnson, J.D.; Paranjpe, A. Comparing Canal Transportation and Centering Ability of EndoSequence and Vortex Rotary Files by Using Micro–Computed Tomography. J. Endod. 2012, 38, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, J.; Versiani, M.A.; De Sousa-Neto, M.D.; Plazas-Garzon, A.; Basrani, B. Evaluation of the Shaping Characteristics of ProTaper Gold, ProTaper NEXT, and ProTaper Universal in Curved Canals. J. Endod. 2015, 41, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Gergi, R.; Osta, N.; Bourbouze, G.; Zgheib, C.; Arbab-Chirani, R.; Naaman, A. Effects of three nickel titanium instrument systems on root canal geometry assessed by micro-computed tomography. Int. Endod. J. 2015, 48, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A.; Arias, A.; Paqué, F. A Micro–computed Tomographic Assessment of Root Canal Preparation with a Novel Instrument, TRUShape, in Mesial Roots of Mandibular Molars. J. Endod. 2015, 41, 1545–1550. [Google Scholar] [CrossRef] [PubMed]
- Saberi, N.; Patel, S.; Mannocci, F. Comparison of centring ability and transportation between four nickel titanium instrumentation techniques by micro-computed tomography. Int. Endod. J. 2017, 50, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-M.; Shen, Y.; Zheng, W.; Li, L.; Zheng, Y.-F.; Haapasalo, M. Mechanical Properties of Controlled Memory and Superelastic Nickel-Titanium Wires Used in the Manufacture of Rotary Endodontic Instruments. J. Endod. 2012, 38, 1535–1540. [Google Scholar] [CrossRef]
- Rhodes, J.S.; Ford, T.R.P.; Lynch, J.; Liepins, P.J.; Curtis, R.V. Micro-computed tomography: A new tool for experimental endodontology. Int. Endod. J. 1999, 32, 165–170. [Google Scholar] [CrossRef]
- Peters, O.A.; Laib, A.; Rüegsegger, P.; Barbakow, F. Three-dimensional Analysis of Root Canal Geometry by High-resolution Computed Tomography. J. Dent. Res. 2000, 79, 1405–1409. [Google Scholar] [CrossRef]
- Dowker, S.E.; Davis, G.R.; Elliott, J.C. X-ray microtomography: Nondestructive three-dimensional imaging for in vitro endodontic studies. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1997, 83, 510–516. [Google Scholar] [CrossRef]
- Di Nardo, D.; Miccoli, G.; Mazzoni, A.; Seracchiani, M.; Gambarini, G.; Testarelli, L. Centering Ability of a New Nickel–Titanium Rotary Instruments with a Peculiar Flat-side Design: An In Vitro Study. J. Contemp. Dent. Pract. 2020, 21, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Paqué, F.; Zehnder, M.; De-Deus, G. Microtomography-based Comparison of Reciprocating Single-File F2 ProTaper Technique versus Rotary Full Sequence. J. Endod. 2011, 37, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.B.; Wesselink, P.R.; Buijs, J.F.; Van Winkelhoff, A.J. Viable Bacteria in Root Dentinal Tubules of Teeth with Apical Periodontitis. J. Endod. 2001, 27, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A.; Schönenberger, K.; Laib, A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int. Endod. J. 2001, 34, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yuan, G.; Yun, X.; Zhou, X.; Liu, B.; Wu, H. Effects of Two Nickel-Titanium Instrument Systems, Mtwo versus ProTaper Universal, on Root Canal Geometry Assessed by Micro–Computed Tomography. J. Endod. 2011, 37, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, B.C.; Ormiga, F.; De Araújo, M.C.P.; Lopes, R.T.; De Lima, I.R.; Dos Santos, B.C.; Gusman, H. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro–Computed Tomographic Study. J. Endod. 2015, 41, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.-M.; Wang, Z.; Campbell, L.; Zheng, Y.; Haapasalo, M. Phase Transformation Behavior and Mechanical Properties of Thermomechanically Treated K3XF Nickel-Titanium Instruments. J. Endod. 2013, 39, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Lima, K.C.; Magalhães, F.A.; Lopes, H.P.; De Uzeda, M. Mechanical reduction of the bacterial population in the root canal by three instrumentation techniques. J. Endod. 1999, 25, 332–335. [Google Scholar] [CrossRef]
- Pettiette, M.T.; Delano, E.O.; Trope, M. Evaluation of Success Rate of Endodontic Treatment Performed by Students with Stainless-Steel K–Files and Nickel–Titanium Hand Files. J. Endod. 2001, 27, 124–127. [Google Scholar] [CrossRef]
- Brantley, W.A.; Svec, T.A.; Iijima, M.; Powers, J.M.; Grentzer, T.H. Differential Scanning Calorimetric Studies of Nickel Titanium Rotary Endodontic Instruments. J. Endod. 2002, 28, 567–572. [Google Scholar] [CrossRef]
Parameter | Group | Mean | p-Value |
---|---|---|---|
∆ Surface area, mm2 | OS | 2.61 ± 1.98 | 0.151 * |
OC | 1.87 ± 1.65 | ||
∆ SMI score | OS | 0.80 ± 0.58 | 0.365 * |
OC | 0.68 ± 0.58 | ||
∆ Canal thickness, mm | OS | 0.24 ± 0.09 | 0.458 |
OC | 0.22 ± 0.09 | ||
The volume of removed dentin, mm3 | OS | 1.37 ± 0.72 | 0.093 |
OC | 1.02 ± 0.52 | ||
Untreated canal surface, % | OS | 54.52 ± 16.09 | 0.691 |
OC | 52.36 ± 17.83 | ||
Straightening, % | OS | 17.30 ± 11.86 | 0.039 |
OC | 10.77 ± 6.81 | ||
Coronal transportation, µm | OS | 103.57 ± 53.86 | 0.210 |
OC | 83.68 ± 44.39 | ||
Middle transportation, µm | OS | 66.37 ± 44.88 | 0.051 |
OC | 42.14 ± 28.96 | ||
Apical transportation, µm | OS | 55.11 ± 35.20 | 0.027 * |
OC | 33.15 ± 22.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.; Alsofi, L.; Balto, K. Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System. Materials 2020, 13, 5546. https://doi.org/10.3390/ma13235546
Alghamdi A, Alsofi L, Balto K. Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System. Materials. 2020; 13(23):5546. https://doi.org/10.3390/ma13235546
Chicago/Turabian StyleAlghamdi, Abdulwahed, Loai Alsofi, and Khaled Balto. 2020. "Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System" Materials 13, no. 23: 5546. https://doi.org/10.3390/ma13235546
APA StyleAlghamdi, A., Alsofi, L., & Balto, K. (2020). Effects of a Novel NiTi Thermomechanical Treatment on the Geometric Features of the Prepared Root Canal System. Materials, 13(23), 5546. https://doi.org/10.3390/ma13235546