A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sperling, L.H. Introduction to Physical Polymer Science; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Baur, J.; Silverman, E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 2007, 32, 328–334. [Google Scholar] [CrossRef]
- Winey, K.I.; Kashiwagi, T.; Mu, M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull. 2007, 32, 348–353. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Cahill, D.G.; Ford, W.K.; Goodson, K.E.; Mahan, G.D.; Majumdar, A.; Maris, H.J.; Merlin, R.; Phillpot, S.R. Nanoscale thermal transport. J. Appl. Phys. 2003, 93, 793–818. [Google Scholar] [CrossRef] [Green Version]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A. Nanoscale thermal transport. ii. 2003–2012. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Xu, X.; Zhang, G.; Li, B. Thermal transport in nanostructures. Aip Adv. 2012, 2, 041410. [Google Scholar] [CrossRef] [Green Version]
- Volz, S.G.; Chen, G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 1999, 75, 2056–2058. [Google Scholar] [CrossRef]
- Henry, A.; Chen, G.; Plimpton, S.; Thompson, A. 1d-to-3d transition of phonon heat conduction in polyethylene using molecular dynamics simulations. Phys. Rev. 2010, 82, 144308. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Lukes, J.R.; Majumdar, A. Monte carlo simulation of silicon nanowire thermal conductivity. J. Heat Transf. 2005, 127, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Maurer, L.; Aksamija, Z.; Ramayya, E.; Davoody, A.; Knezevic, I. Universal features of phonon transport in nanowires with correlated surface roughness. Appl. Phys. Lett. 2015, 106, 133108. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 2010, 5, 251. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Q.; Mayo, A.; Ni, Z.; Yi, H.; Chen, Y.; Mu, R.; Bellan, L.M.; Li, D. Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale 2015, 7, 16899–16908. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wingert, M.C.; Strzalka, J.; Wang, H.-H.; Sun, T.; Wang, J.; Chen, R.; Jiang, Z. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers. Nanoscale 2014, 6, 8283–8291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, X.; Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. 2014, 118, 21148–21159. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ho, V.; Segalman, R.A.; Cahill, D.G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 2013, 46, 4937–4943. [Google Scholar] [CrossRef]
- Henry, A.; Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 2008, 101, 235502. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.; Greig, D.; Sahota, M.; Ward, I.; Choy, C. Thermal conductivity of ultrahigh-modulus polyethylene. J. Polym. Sci. Polym. Lett. Ed. 1977, 15, 183–192. [Google Scholar] [CrossRef]
- Choy, C.; Luk, W.; Chen, F. Thermal conductivity of highly oriented polyethylene. Polymer 1978, 19, 155–162. [Google Scholar] [CrossRef]
- Mergenthaler, D.; Pietralla, M.; Roy, S.; Kilian, H. Thermal conductivity in ultraoriented polyethylene. Macromolecules 1992, 25, 3500–3502. [Google Scholar] [CrossRef]
- Choy, C.L.; Wong, Y.W.; Yang, G.W.; Kanamoto, T. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. Part Polym. Phys. 1999, 37, 3359–3367. [Google Scholar] [CrossRef]
- Henry, A.; Chen, G. Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations. Phys. Rev. B 2009, 79, 144305. [Google Scholar] [CrossRef]
- Wang, J.-S.; Li, B. Mode-coupling theory and molecular dynamics simulation for heat conduction in a chain with transverse motions. Phys. Rev. E 2004, 70, 021204. [Google Scholar] [CrossRef] [Green Version]
- Savin, A.V.; Tsironis, G.P.; Zolotaryuk, A.V. Heat conduction in one-dimensional systems with hard-point interparticle interactions. Phys. Rev. Lett. 2002, 88, 154301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepri, S.; Livi, R.; Politi, A. Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 2003, 68, 067102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canetta, C. Bi-Material Microcantilever-Based Thermal Sensing Techniques; Columbia University: New York, NY, USA, 2014. [Google Scholar]
- Bonatt, N. A Novel Approach for Measuring Thermal Conductivity of Electro-Spun Nanofibers; University of Rhode Island: Kingston, RI, USA, 2018. [Google Scholar]
- Theron, S.; Zussman, E.; Yarin, A. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, 2017–2030. [Google Scholar] [CrossRef]
- Reneker, D.; Yarin, A. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003, 3, 1167–1171. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 2004, 16, 361–366. [Google Scholar] [CrossRef]
- Huang, C.; Chen, S.; Lai, C.; Reneker, D.; Qiu, H.; Ye, Y.; Hou, H. Electrospun polymer nanofibres with small diameters. Nanotechnology 2006, 17, 1558–1563. [Google Scholar] [CrossRef]
- Putman, C.A.; de Grooth, B.G.; van Hulst, N.F.; Greve, J. A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in afm. Ultramicroscopy 1992, 42–44, 1509–1513. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E.; Pasta, P.; Ulam, S.; Tsingou, M. Studies of the nonlinear problems. Tech. Rep. 1955. [Google Scholar] [CrossRef] [Green Version]
Solder Temp (C) | (C) | (C) | (C) | (C) | (C) |
---|---|---|---|---|---|
100 | 0 | 0 | 0 | 0 | 0 |
150 | 1.4151 | 0.42494 | 0.85987 | 0.54005 | 0.42494 |
200 | 3.0192 | 0.97729 | 1.8575 | 1.1809 | 0.97729 |
250 | 4.7307 | 1.6543 | 3.016 | 1.986 | 1.6543 |
300 | 6.4784 | 2.4063 | 4.389 | 2.9301 | 2.4063 |
350 | 8.2314 | 3.2395 | 5.9458 | 4.026 | 3.2395 |
400 | 10.18 | 4.2176 | 7.7851 | 5.2942 | 4.2176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonatt, N.; Carlin, J.; Chen, F.; Tian, Y.; Zheng, Y. A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers. Materials 2020, 13, 5220. https://doi.org/10.3390/ma13225220
Bonatt N, Carlin J, Chen F, Tian Y, Zheng Y. A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers. Materials. 2020; 13(22):5220. https://doi.org/10.3390/ma13225220
Chicago/Turabian StyleBonatt, Nicholas, John Carlin, Fangqi Chen, Yanpei Tian, and Yi Zheng. 2020. "A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers" Materials 13, no. 22: 5220. https://doi.org/10.3390/ma13225220
APA StyleBonatt, N., Carlin, J., Chen, F., Tian, Y., & Zheng, Y. (2020). A Novel Probe-to-Probe Method for Measuring Thermal Conductivity of Individual Electrospun Nanofibers. Materials, 13(22), 5220. https://doi.org/10.3390/ma13225220