Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Activity Measurements
3. Results
3.1. Physico-Chemical Characterization
3.1.1. XRD
3.1.2. N2 Adsorption–Desorption Isotherms
3.1.3. SEM
3.1.4. TEM and EDX Analysis
3.1.5. XPS
3.1.6. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Védrine, J. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.M. Metal Oxides, 1st ed.; CRC Press: New York, NY, USA, 2005; ISBN 9780429113857. [Google Scholar]
- Anthony, P. Transition Metal Oxides. An Introduction to Their Electronic Structure and Properties, 1st ed.; Oxford University Press: Oxford, UK, 1992; ISBN 0198555709. [Google Scholar]
- Kung, H.H. Transition Metal Oxides: Surface Chemistry and Catalysis, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1989; ISBN 0444873945. [Google Scholar]
- Bion, N.; Can, F.; Courtois, X.; Duprez, D. Transition metal oxides for combustion and depollution processes. In Metal Oxides in Heterogeneous Catalysis; Vedrine, J.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128116319. [Google Scholar]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Horiuchi, T.; Sakuma, K.; Fukui, T.; Kubo, Y.; Osaki, T.; Mori, T. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl. Catal. A Gen. 1996, 144, 111–120. [Google Scholar] [CrossRef]
- Lucrédio, A.F.; Jerkiewicz, G.; Assaf, E.M. Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions. Appl. Catal. B Environ. 2008, 84, 106–111. [Google Scholar] [CrossRef]
- Hu, X.; Lu, G. Acetic acid steam reforming to hydrogen over Co-Ce/Al2O3 and Co-La/Al2O3 catalysts-The promotion effect of Ce and la addition. Catal. Commun. 2010, 12, 50–53. [Google Scholar] [CrossRef]
- Lindsey, J.; Klettlinger, S. Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support. Nasa/Tm-2012-216020. 2012. Available online: https://core.ac.uk/reader/10572180 (accessed on 1 October 2012).
- De Sousa, H.S.A.; Da Silva, A.N.; Castro, A.J.R.; Campos, A.; Filho, J.M.; Oliveira, A.C. Mesoporous catalysts for dry reforming of methane: Correlation between structure and deactivation behaviour of Ni-containing catalysts. Int. J. Hydrogen Energy 2012, 37, 12281–12291. [Google Scholar] [CrossRef]
- Deraz, N.A.M. Surface and catalytic properties of Co3O4-doped CuO-Al2O3 catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2002, 207, 197–206. [Google Scholar] [CrossRef]
- Koo, K.Y.; Roh, H.S.; Seo, Y.T.; Seo, D.J.; Yoon, W.L.; Park, S. Bin Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Appl. Catal. A Gen. 2008, 340, 183–190. [Google Scholar] [CrossRef]
- Smoláková, L.; Kout, M.; Koudelková, E.; Čapek, L. Effect of calcination temperature on the structure and catalytic performance of the Ni/Al2O3 and Ni–Ce/Al2O3 catalysts in oxidative dehydrogenation of ethane. Ind. Eng. Chem. Res. 2015, 54, 12730–12740. [Google Scholar] [CrossRef]
- Frikha, K.; Bennici, S.; Bouaziz, J.; Chaari, K.; Limousy, L. Influence of the Fuel/Oxidant Ratio on the Elaboration of Binary Oxide Catalyst by a Microwave-Assisted Solution Combustion Method. Energies 2020, 13, 3126. [Google Scholar] [CrossRef]
- Frikha, K.; Limousy, L.; Bouaziz, J.; Chaari, K.; Josien, L.; Nouali, H.; Michelin, L.; Vidal, L.; Hajjar-Garreau, S.; Bennici, S. Binary oxides prepared by microwave-assisted solution combustion: Synthesis, characterization and catalytic activity. Materials 2019, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Meng, F.; Ji, K.; Song, Y.; Li, Z. Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion. Appl. Catal. A Gen. 2016, 510, 74–83. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, F.; Li, X.; Wen, J.Z.; Li, Z. Factors controlling nanosized Ni–Al2O3 catalysts synthesized by solution combustion for slurry-phase CO methanation: The ratio of reducing valences to oxidizing valences in redox systems. Catal. Sci. Technol. 2016, 6, 7800–7811. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, F.; Cheng, Y.; Li, Z. Influence of fuel additives in the urea-nitrates solution combustion synthesis of Ni-Al2O3 catalyst for slurry phase CO methanation. Appl. Catal. A Gen. 2017, 534, 12–21. [Google Scholar] [CrossRef]
- El-Shobaky, G.A.; El nabarawy, T.; Morsi, I.M.; Ghoneim, N.M. Physicochemical properties of NiO-Al2O3 mixed oxides and their relationship with thermal treatment and chemical composition. Surf. Technol. 1983, 19, 109–118. [Google Scholar] [CrossRef]
- El-Shobaky, G.A.; Al-Noaimi, A.N. Surface properties of Ni-Al mixed oxide catalysts. Surf. Technol. 1985, 26, 235–244. [Google Scholar] [CrossRef]
- Rynkowski, J.M.; Paryjczak, T.; Lenik, M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl. Catal. A Gen. 1993, 106, 73–82. [Google Scholar] [CrossRef]
- Richardson, J.T.; Vernon, L.W. The Magnetic Properties of the Cobalt Oxide–Alumina System. J. Phys. Chem. 1958, 62, 1153–1157. [Google Scholar] [CrossRef]
- Wang, W.-J.; Chen, Y.-W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Appl. Catal. 1991, 77, 223–233. [Google Scholar] [CrossRef]
- Chin, R.L.; Hercules, D.M. Surface spectroscopic characterization of cobalt-alumina catalysts. J. Phys. Chem. 1982, 86, 360–367. [Google Scholar] [CrossRef]
- Renuka, N.K.; Shijina, A.V.; Praveen, A.K.; Aniz, C.U. Redox properties and catalytic activity of CuO/γ-Al2O3 meso phase. J. Colloid Interface Sci. 2014, 434, 195–200. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Wang, X.; Ma, Y.; Liu, J.; Liu, W.; Xu, X.; Peng, H.; Li, C.; Zhou, W.; Yuan, P.; et al. Ni-Co/Al2O3 Bimetallic Catalysts for CH4 Steam Reforming: Elucidating the Role of Co for Improving Coke Resistance. ChemCatChem 2014, 6, 3377–3386. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Koike, M.; Watanabe, H.; Xu, Y.; Nakagawa, Y.; Tomishige, K. Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel 2013, 112, 654–661. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Tseng, H.-H.; Wey, M.-Y.; Liu, L.-Y.; Chuang, K.-H. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu-Co/Al2O3 prepared using the polyol process. Mater. Sci. Eng. B 2009, 157, 105–112. [Google Scholar] [CrossRef]
- Sagata, K.; Kawanishi, Y.; Asamoto, M.; Yamaura, H.; Yahiro, H. Effect of Transition-metal Oxide Additives for Water–Gas-shift Reaction over Supported Copper Catalyst. Chem. Lett. 2009, 38, 172–173. [Google Scholar] [CrossRef]
- Wang, X.; Pan, X.; Lin, R.; Kou, S.; Zou, W.; Ma, J.-X. Steam reforming of dimethyl ether over Cu–Ni/γ-Al2O3 bi-functional catalyst prepared by deposition–precipitation method. Int. J. Hydrogen Energy 2010, 35, 4060–4068. [Google Scholar] [CrossRef]
- Jain, S.R.; Adiga, K.C.; Pai Verneker, V.R. Thermochemistry and lower combustion limit of ammonium perchlorate in presence of methylammonium perchlorates. Combust. Flame 1981, 40, 113–120. [Google Scholar] [CrossRef]
- Sajjadi, S.M.; Haghighi, M. Combustion vs. hybrid sol-gel-plasma surface design of coke-resistant Co-promoted Ni-spinel nanocatalyst used in combined reforming of CH4/CO2/O2 for hydrogen production. Chem. Eng. J. 2019, 362, 767–782. [Google Scholar] [CrossRef]
- Cinar, T.; Gurkaynak Altincekic, T. Synthesis and investigation of bimetallic Ni-Co/Al2O3 nanocatalysts using the polyol process. Part. Sci. Technol. 2016, 34, 725–735. [Google Scholar] [CrossRef]
- Sajjadi, S.M.; Haghighi, M.; Eslami, A.A.; Rahmani, F. Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: Impregnation versus sol–gel method and effect of process conditions and promoter. J. Sol.-Gel. Sci. Technol. 2013, 67, 601–617. [Google Scholar] [CrossRef]
- Khzouz, M.; Wood, J.; Pollet, B.; Bujalski, W. Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int. J. Hydrogen Energy 2013, 38, 1664–1675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, J.; Li, W.; Guo, C.; Zhang, J. Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M = Si, La, Mg, and Zn) catalysts. J. Nat. Gas Chem. 2009, 18, 55–65. [Google Scholar] [CrossRef]
- Rahemi, N.; Haghighi, M.; Babaluo, A.A.; Allahyari, S.; Jafari, M.F. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni–Cu/Al2O3 nanocatalyst: Impregnated vs. plasma-treated catalyst. Energy Convers. Manag. 2014, 84, 50–59. [Google Scholar] [CrossRef]
- Kingsley, J.J.; Suresh, K.; Patil, K.C. Combustion synthesis of fine-particle metal aluminates. J. Mater. Sci. 1990, 25, 1305–1312. [Google Scholar] [CrossRef]
- Chen, C.S.; You, J.H.; Lin, J.H.; Chen, C.R.; Lin, K.M. The effect of a nickel promoter on the reducibility of a commercial Cu/ZnO/Al2O3 catalyst for CO oxidation. Catal. Commun. 2008, 9, 1230–1234. [Google Scholar] [CrossRef]
- Heracleous, E.; Lee, A.; Wilson, K.; Lemonidou, A. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: Structural characterization and reactivity studies. J. Catal. 2005, 231, 159–171. [Google Scholar] [CrossRef]
- Voß, M.; Borgmann, D.; Wedler, G. Characterization of alumina, silica, and titania supported cobalt catalysts. J. Catal. 2002, 212, 10–21. [Google Scholar] [CrossRef]
- Duan, X.; Pan, M.; Yu, F.; Yuan, D. Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 2011, 509, 1079–1083. [Google Scholar] [CrossRef]
- Severino, F.; Brito, J.L.; Laine, J.; Fierro, J.L.G.; Agudo, A.L. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. J. Catal. 1998, 177, 82–95. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
Sample Identity | Metal Loading (wt%) 1 | BET Surface Area (m2g−1) | Pore Diameter (nm) 2 | Pore Volume (cm3g−1) 3 | ||
---|---|---|---|---|---|---|
Ni | Co | Cu | ||||
5Ni5CoAl | 5.60 | 5.66 | − | 25 | 3.60 | 0.03 |
5Ni5CuAl | 5.22 | − | 5.88 | 23 | 4.00 | 0.03 |
5Co5CuAl | − | 6.65 | 6.06 | 31 | 3.10 | 0.03 |
Sample Identity | Surface Atomic Ratio | ||
---|---|---|---|
Ni/Al | Co/Al | Cu/Al | |
5Ni5CoAl | 0.035 | 0.033 | − |
5Ni5CuAl | 0.032 | − | 0.136 |
5Co5CuAl | − | 0.038 | 0.076 |
Sample Identity | T1 | T50 | T100 |
---|---|---|---|
5Ni5CoAl | 243 | 500 | − |
5Ni5CuAl | 125 | 208 | 475 |
5Co5CuAl | 140 | 268 | 369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frikha, K.; Limousy, L.; Bouaziz, J.; Chaari, K.; Bennici, S. Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method. Materials 2020, 13, 4607. https://doi.org/10.3390/ma13204607
Frikha K, Limousy L, Bouaziz J, Chaari K, Bennici S. Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method. Materials. 2020; 13(20):4607. https://doi.org/10.3390/ma13204607
Chicago/Turabian StyleFrikha, Kawthar, Lionel Limousy, Jamel Bouaziz, Kamel Chaari, and Simona Bennici. 2020. "Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method" Materials 13, no. 20: 4607. https://doi.org/10.3390/ma13204607
APA StyleFrikha, K., Limousy, L., Bouaziz, J., Chaari, K., & Bennici, S. (2020). Synthesis, Characterization and Catalytic Activity of Ternary Oxide Catalysts Using the Microwave-Assisted Solution Combustion Method. Materials, 13(20), 4607. https://doi.org/10.3390/ma13204607