Hot Deformation Treatment of Grain-Modified Mg–Li Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
The Processing Maps
4. Conclusions
- The stress–strain curves of the as-cast Mg–4.5 Li–1.5 Al + 0.2 TiB alloy under thermal compression were characterized by dynamic softening. When the strain increased, the work hardening effect was more efficient. The true stress decreased with an increase in the temperature at the same strain rate. Moreover, the peak stress decreased with a decrease in the strain rate at the same temperature.
- The activation energy, Q, of the analyzed alloy was 144.34 kJ/mol. The correlation among flow stress, deformation temperature, and strain rate was calculated using an Arrhenius-type constitutive equation with a hyperbolic sine function,
- According to the dynamic material model, the processing maps at a strain of 0.3 and 0.6 were established, and the stable regions were determined. Generally, the stability domains of the analyzed alloy occurred in the low-strain-rate region. Moreover, processing maps indicated through calculations that ξ was positive under all test conditions, suggesting that there were no instability regions.
- The processing maps at a true strain of 1 revealed three stable domains. The complete processing map and microstructure study showed that the best parameters of processing were established to be over a deformation temperature range of 590–670 K and a strain rate range of 0.01–0.02 s−1.
Author Contributions
Funding
Conflicts of Interest
References
- Yu, X.; Wang, J.; Zhang, M.L.; Yang, P.P.; Yang, L.H.; Cao, D.X.; Li, J.Q. One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection. Solid State Sci. 2009, 11, 376–381. [Google Scholar] [CrossRef]
- Jia, W.T.; Ma, L.F.; Le, Q.C.; Zhi, C.C.; Liu, P.T. Deformation and fracture behaviors of AZ31B Mg alloy at elevated temperature under uniaxial compression. J. Alloys Compd. 2019, 783, 863–876. [Google Scholar] [CrossRef]
- Li, X.; Ren, L.; Le, Q.; Jin, P.; Cheng, C.; Wang, T.; Wang, P.; Zhou, X.; Chen, X.; Li, D. The hot deformation behavior, microstructure evolution and texture types of as-cast Mg–Li alloy. J. Alloy Compd. 2020, 831, 154868. [Google Scholar] [CrossRef]
- Li, Y.; Guan, Y.; Zhai, J.; Lin, J. Hot Deformation Behavior of LA43M Mg-Li Alloy via Hot Compression Tests. J. Mater. Eng. Perform. 2019, 28, 7768–7781. [Google Scholar] [CrossRef]
- Cheng, Y.; Qin, T.; Wang, H.; Zhang, Z. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. T. Nonferr. Metal Soc. 2009, 19, 517–524. [Google Scholar] [CrossRef]
- Król, M. Effect of grain refinements on the microstructure and thermal behaviour of Mg–Li–Al alloy. J. Therm. Anal. Calorim. 2018, 133, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Birbilis, N.; Sha, G.; Wang, Y.; Daniels, J.E.; Xiao, Y.; Ferry, M. A High-Specific-Strength and Corrosion-Resistant Magnesium Alloy. Nat. Mater. 2015, 14, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, R.; Ren, J.; Feng, C.P. Hot deformation behavior of Mg-8Li-3Al-2Zn-0.2Zr alloy based on constitutive analysis, dynamic recrystallization kinetics, and processing map. Mech Mater. 2019, 131, 158–168. [Google Scholar] [CrossRef]
- Dong, H.; Pan, F.; Jiang, B.; Zeng, Y. Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio. Mater. Des. 2014, 57, 121–127. [Google Scholar] [CrossRef]
- Zhao, Z.; Xing, X.; Ma, J.; Bian, L.; Liang, W.; Wang, Y. Effect of addition of Al-Si eutectic alloy on microstructure and mechanical properties of Mg-12wt%Li alloy. J. Mater. Sci. Technol. 2018, 34, 1564–1569. [Google Scholar] [CrossRef]
- Becerra, A.; Pekguleryuz, M. Effects of lithium, indium, and zinc on the lattice parameters of magnesium. J. Mater. Res. 2008, 23, 3379–3386. [Google Scholar] [CrossRef]
- Li, R.H.; Pan, F.S.; Jiang, B.; Dong, H.W.; Yang, Q.S. Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy. Mater. Sci. Eng. 2013, 562, 33–38. [Google Scholar] [CrossRef]
- Sroka, M.; Zieliński, A.; Mikuła, J. The service life of the repair welded joint of Cr-Mo/Cr-Mo-V. Arch. Metal. Mater. 2016, 61, 969–974. [Google Scholar] [CrossRef]
- Zieliński, A.; Sroka, M.; Dudziak, T. Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service. Materials 2018, 11, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojdanic, A.; Horky, J.; Mingler, B.; Fanetti, M.; Gardonio, S.; Valant, M.; Sulkowski, B.; Schafler, E.; Orlov, D.; Zehetbauer, M.J. The Effects of Severe Plastic Deformation and/or Thermal Treatment on the Mechanical Properties of Biodegradable Mg-Alloys. Metals 2020, 10, 1064. [Google Scholar] [CrossRef]
- Lianggang, G.; Shuang, Y.; He, Y.; Jun, Z. Processing map of as-cast 7075 aluminum alloy for hot working. Chin. J. Aeronaut. 2015, 28, 1774–1783. [Google Scholar]
- Zhou, X.; Wang, K.; Lu, S.; Li, X.; Feng, R.; Zhong, M. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy. J. Mater. Res. Technol. 2020, 9, 2652–2661. [Google Scholar] [CrossRef]
- Łukaszek-Sołek, A.; Krawczyk, J.; Śleboda, T.; Grelowski, J. Optimization of the hot forging parameters for 4340 steel by processing maps. J. Mater. Res. Technol. 2019, 8, 3281–3290. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, J.; Xu, C.; Nie, K. Optimum Parameters and Kinetic Analysis for Hot Working of a Solution-Treated Mg-Zn-Y-Mn Magnesium Alloy. J. Alloy Compd. 2018, 754, 283–296. [Google Scholar] [CrossRef]
- Nuckowski, P.M. Texture and residual stresses in the CuSn6 alloy subjected to intense plastic deformation. Arch. Metal. Mater. 2018, 63, 241–245. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, X.; Ren, F.; Wen, H.; Su, J.; Xie, W. Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg–Li–Al–Sr Alloy. J. Mater. Sci. Technol. 2016, 32, 1289–1296. [Google Scholar] [CrossRef]
- Ch, Z.; Li, Z.; Yu, C. Hot deformation behavior of an extruded Mg–Li–Zn–RE alloy. Mater. Sci. Eng. A Struct. 2011, 528, 961–966. [Google Scholar]
- Bajargan, G.; Singh, G.; Ramamurty, U. Effect of Li addition on the plastic deformation behaviour of AZ31 magnesium alloy. Mater. Sci. Eng. A Struct. 2016, 662, 492–505. [Google Scholar] [CrossRef]
- Hao, M.; Cheng, W.; Wang, L.; Mostaed, E.; Bian, L.; Wang, H.; Niu, X. Texture evolution in Mg-8Sn-1Zn-1Al alloy during hot compression via competition between twinning and dynamic precipitation. Mater. Sci. Eng. A Struct. 2019, 748, 418–427. [Google Scholar] [CrossRef]
- Askariani, S.A.; Pishbin, S.M.H. Hot Deformation Behavior of Mg-4Li-1Al Alloy via Hot Compression Tests. J. Alloy Compd. 2016, 688, 1058–1065. [Google Scholar] [CrossRef]
- Trojanová, Z.; Droz, Z.; Lukáč, P.; Chmelík, F. Deformation behaviour of Mg–Li alloys at elevated temperatures. Mater. Sci. Eng. A Struct. 2005, 410–411, 148–151. [Google Scholar] [CrossRef]
- Wu, C.; Han, S. Hot Deformation Behavior and Dynamic Recrystallization Characteristics in a Low-Alloy High-Strength Ni- Cr-Mo-V Steel. Acta Metal. Sin Engl. 2018, 31, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Król, M. Magnesium–lithium alloys with TiB and Sr additions. J. Therm. Anal. Calorim. 2019, 138, 4237–4245. [Google Scholar] [CrossRef] [Green Version]
- Król, M.; Snopiński, P.; Czech, A. The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Xie, W.; Hadadzadeh, A.; Wei, G.; Ma, Z.; Liu, J.; Yang, Y.; Xie, W.; Peng, X.; Wells, M. Hot deformation behavior and processing map of a superlight dual-phase Mg–Li alloy. J. Alloy Compd. 2018, 766, 460–469. [Google Scholar] [CrossRef]
- Sakai, T.; Jonas, J.J. Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metal. 1984, 32, 189–209. [Google Scholar] [CrossRef]
- Spigarelli, S.; Mehtedi, M.E. High-Temperature Deformation and Creep in Mg Wrought Alloys. Scripta Mater. 2010, 63, 704–709. [Google Scholar] [CrossRef]
- Hajnyš, J.; Pagáč, M.; Mesicek, J.; Petrů, J.; Krol, M. Influence of scanning strategies parameters on residual stress in SLM process according to bridge curvature method for stainless steel AISI 316L. Materials 2020, 13, 1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Li, F.G.; Liu, T.Y.; Chen, B.; Hen, M. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain. Mater. Des. 2011, 32, 1144–1151. [Google Scholar] [CrossRef]
- Dieter, E.G. Mechanical Metallurgy, 2nd ed.; McGraw Hill Publishing: New York, NY, USA, 1976. [Google Scholar]
- Quan, G.Z.; Shi, Y.; Wang, Y.X.; Kang, B.S.; Ku, T.W.; Songet, W.J. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stressestrain data. Mater. Sci. Eng. A Struct. 2011, 528, 8051–8059. [Google Scholar] [CrossRef]
- Chen, Z.; Tong, R.; Dong, Z. Plastic Flow Characteristics of an Extruded Mg-Li-Zn-RE Alloy. Rare Metal. Mater. Eng. 2013, 42, 1779–1784. [Google Scholar]
- Lv, B.J.; Peng, J.; Wang, Y.J.; An, X.Q.; Zhong, L.P.; Tang, A.T.; Pan, F.S. Dynamic recrystallization behavior and hot workability of Mge2.0Zne0.3Zre0.9Y alloy by using hot compression test. Mater. Des. 2014, 53, 357–365. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P.; Hort, N.; Kainer, K.U. Hot working parameters and mechanisms in as-cast mge3sne1ca alloy. Mater. Lett. 2008, 62, 4207–4209. [Google Scholar] [CrossRef]
- Xu, T.C.; Peng, X.D.; Qin, J.; Chen, Y.F.; Yang, Y.; Wei, G.B. Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression. J. Alloy Compd. 2015, 639, 79–88. [Google Scholar] [CrossRef]
- Sivakesavam, O.; Prasad, Y.V.R.K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mge11.5Lie1.5Al alloy. Mater. Sci. Eng. A Struct. 2002, 323, 270–277. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhao, Z.G.; Lu, S.Q. Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy. Catal. Today. 2018, 318, 119–125. [Google Scholar]
- Hlinka, J.; Kraus, M.; Hajnys, J.; Pagac, M.; Petrů, J.; Brytan, Z.; Tański, T. Complex Corrosion Properties of AISI 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications. Materials 2020, 13, 1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Xuanyuan, Y.; Lia, C.; Yang, S. Characterization of Hot Deformation Behavior and Processing Maps of Mg-3Sn-2Al-1Zn-5Li Magnesium Alloy. Metals 2019, 9, 1262. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Huang, W.; Zhang, D.; Guo, F.; Xue, H.; Xu, J.; Pan, F. Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression. J. Alloy Compd. 2017, 727, 205–214. [Google Scholar] [CrossRef]
- Wei, G.; Peng, X.; Hadadzadeh, A.; Mahmoodkhani, Y.; Xie, W.; Yang, Y.; Wells, M.A. Constitutive modelling of Mg–9Li–3Al–2Sr–2Y at elevated temperatures. Mech. Mater. 2015, 89, 241–253. [Google Scholar] [CrossRef]
- Srinivasan, N.; Prasad, Y.V.R.K.; Rao, P.R. Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map. Mater. Sci. Eng. A Struct. 2008, 476, 146–156. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, L.; Li, Y.; Wang, H.; Liu, J.; Liaw, P.K.; Bei, H.; Zhang, Z. Improvement of Mechanical Behaviors of a Superlight Mg-Li Base Alloy by Duplex Phases and Fine Precipitates. J. Alloy Compd. 2018, 735, 2625–2633. [Google Scholar] [CrossRef]
- He, J.; Jiang, B.; Yu, X.; Xu, J.; Jiang, Z.; Liu, B.; Pan, F. Strain Path Dependence of Texture and Property Evolutions on Rolled Mg-Li-Al- Zn Alloy Possessed of an Asymmetric Texture. J. Alloy Compd. 2017, 698, 771–785. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Modelling of hot deformation for microstructural control. Int. Mater. Rev. 1998, 43, 243–258. [Google Scholar] [CrossRef]
- Shalbafi, M.; Roumina, R.; Mahmudi, R. Hot deformation of the extruded Mge10Lie1Zn alloy: Constitutive analysis and processing maps. J. Alloys Compd. 2017, 696, 1269–1277. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Ji, J.; Sun, Z. Effects of second phases on deformation behavior and dynamic recrystallization of as-cast Mg-4.3Li-4.1Zn-1.4Y alloy during hot compression. J. Alloy Compd. 2019, 770, 540–548. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Li | Al | Si | B | Ti | Fe | Mg |
---|---|---|---|---|---|---|
4.66 | 1.80 | 0.0052 | 0.0019 | 0.0069 | 0.0019 | Balance |
Deformation Temperature (°C) | –lnσ | –σ | –ln[sinh(ασ] | |||
---|---|---|---|---|---|---|
Regression Equation | Correlation Coefficient | Regression Equation | Correlation Coefficient | Regression Equation | Correlation Coefficient | |
250 | y = 8.59x − 44.50 | 0.99196 | y = 0.06x − 11.28 | 0.99854 | y = 4.55x − 7.44 | 0.99764 |
300 | y = 6.89x − 34.02 | 0.9999 | y = 0.06x − 9.27 | 0.99574 | y = 4.41x − 4.95 | 0.99834 |
350 | y = 5.98x − 27.27 | 0.9998 | y = 0.08x − 8.33 | 0.99302 | y = 4.733x − 2.32 | 0.99869 |
400 | y = 5.23x − 22.03 | 0.99849 | y = 0.11x − 7.48 | 0.98478 | y = 4.62x − 0.11 | 0.99679 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król, M.; Snopiński, P.; Pagáč, M.; Hajnyš, J.; Petrů, J. Hot Deformation Treatment of Grain-Modified Mg–Li Alloy. Materials 2020, 13, 4557. https://doi.org/10.3390/ma13204557
Król M, Snopiński P, Pagáč M, Hajnyš J, Petrů J. Hot Deformation Treatment of Grain-Modified Mg–Li Alloy. Materials. 2020; 13(20):4557. https://doi.org/10.3390/ma13204557
Chicago/Turabian StyleKról, Mariusz, Przemysław Snopiński, Marek Pagáč, Jiří Hajnyš, and Jana Petrů. 2020. "Hot Deformation Treatment of Grain-Modified Mg–Li Alloy" Materials 13, no. 20: 4557. https://doi.org/10.3390/ma13204557
APA StyleKról, M., Snopiński, P., Pagáč, M., Hajnyš, J., & Petrů, J. (2020). Hot Deformation Treatment of Grain-Modified Mg–Li Alloy. Materials, 13(20), 4557. https://doi.org/10.3390/ma13204557