Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pure Vanadium Substrate
2.2. V-9Si-5B Alloy Substrate
2.3. Conditioning of Packed Samples
2.4. Metallographic Preparation
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sakidja, R.; Perepezko, J.; Kim, S.; Sekido, N. Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater. 2008, 56, 5223–5244. [Google Scholar] [CrossRef]
- Becker, J.; Betke, U.; Hoffmeister, M.; Krüger, M. Density Reduction of Mo-Si-B Alloys by Vanadium Alloying. JOM 2018, 70, 2574–2581. [Google Scholar] [CrossRef]
- Krüger, M.; Schmelzer, J.; Helmecke, M. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders. Metals 2016, 6, 241. [Google Scholar] [CrossRef]
- Krüger, M.; Bolbut, V.; Gang, F.; Hasemann, G. Microstructure Variations and Creep Properties of Novel High Temperature V-Si-B Materials. JOM 2016, 68, 2811–2816. [Google Scholar] [CrossRef]
- Hasemann, G.; Müller, C.; Grüner, D.; Wessel, E.; Krüger, M. Room temperature plastic deformability in V-rich V–Si–B alloys. Acta Mater. 2019, 175, 140–147. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Matsui, H.; Smith, D.; Rowcliffe, A.; Van Osch, E.; Abe, K.; Kazakov, V. Research and development on vanadium alloys for fusion applications. J. Nucl. Mater. 1998, 258, 205–214. [Google Scholar] [CrossRef]
- Natesan, K.; Uz, M. Oxidation performance of VCrTi alloys. Fusion Eng. Des. 2000, 51, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Tyumentsev, A.; Korotaev, A.D.; Pinzhin, Y.; Ovchinnikov, S.; Ditenberg, I.; Shikov, A.; Potapenko, M.M.; Chernov, V.M. Effect of internal oxidation on the microstructure and mechanical properties of vanadium alloys. J. Nucl. Mater. 2007, 367, 853–857. [Google Scholar] [CrossRef]
- Zheng, P.; Nagasaka, T.; Muroga, T.; Chen, J. Investigation on mechanical alloying process for vanadium alloys. J. Nucl. Mater. 2013, 442, S330–S335. [Google Scholar] [CrossRef]
- Rioult, F.; Imhoff, S.; Sakidja, R.; Perepezko, J. Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale. Acta Mater. 2009, 57, 4600–4613. [Google Scholar] [CrossRef]
- Perepezko, J. Surface Engineering of Mo-Base Alloys for Elevated-Temperature Environmental Resistance. Annu. Rev. Mater. Res. 2015, 45, 519–542. [Google Scholar] [CrossRef]
- Williams, J.; Akinc, M. Oxidation behavior of V5Si3 based materials. Intermetallics 1998, 6, 269–275. [Google Scholar] [CrossRef]
- Keller, J.G.; Douglass, D.L. The high-temperature oxidation behavior of vanadium-aluminum alloys. Oxid. Met. 1991, 36, 439–464. [Google Scholar] [CrossRef]
- Krüger, M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scr. Mater. 2016, 121, 75–78. [Google Scholar] [CrossRef]
- Hasemann, G.; Krüger, M.; Palm, M.; Stein, F. Microstructures of Ternary Eutectic Refractory Me-Si-B (Me = Mo, V) Alloy Systems. Mater. Sci. Forum 2018, 941, 827–832. [Google Scholar] [CrossRef]
- Hasemann, G.; Baumann, T.; Dieck, S.; Rannabauer, S.; Krüger, M. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys. Met. Mater. Trans. A 2015, 46, 1455–1460. [Google Scholar] [CrossRef]
- Krüger, M.; Schmelzer, J.; Smokovych, I.; Barrilao, J.L.; Hasemann, G. Processing of Mo silicide powders as filler particles in polymer-derived ceramic coatings for Mo-Si-B substrates. Powder Technol. 2019, 352, 381–385. [Google Scholar] [CrossRef]
- Smokovych, I.; Scheffler, M. Polysilazane-Type Coatings on Mo-Si-B Alloys: A Thermodynamic Assessment of the Phase Composition. Adv. Eng. Mater. 2018, 20, 1700936. [Google Scholar] [CrossRef]
- Lange, A.; Braun, R.; Heilmaier, M. Oxidation behavior of magnetron sputtered double layer coatings containing molybdenum, silicon and boron. Intermetallics 2014, 48, 19–27. [Google Scholar] [CrossRef]
- Lange, A.; Braun, R. Magnetron-sputtered oxidation protection coatings for Mo–Si–B alloys. Corros. Sci. 2014, 84, 74–84. [Google Scholar] [CrossRef]
- Lange, A.; Heilmaier, M.; Sossamann, T.A.; Perepezko, J.H. Oxidation behavior of pack-cemented Si–B oxidation protection coatings for Mo–Si–B alloys at 1300 °C. Surf. Coat. Technol. 2015, 266, 57–63. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Sakidja, R. Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys. JOM 2010, 62, 13–19. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Sossaman, T.A.; Taylor, M. Environmentally Resistant Mo-Si-B-Based Coatings. J. Therm. Spray Technol. 2017, 26, 929–940. [Google Scholar] [CrossRef]
- Schliephake, D.; Gombola, C.; Kauffmann, A.; Heilmaier, M.; Perepezko, J.H. Enhanced Oxidation Resistance of Mo–Si–B–Ti Alloys by Pack Cementation. Oxid. Met. 2017, 88, 267–277. [Google Scholar] [CrossRef]
- Hasemann, G. Experimental study of the liquidus surface in the V-rich portion of the V-Si-B system. J. Alloys Compd. 2020, 824, 153843. [Google Scholar] [CrossRef]
- Rawn, C.; Schneibel, J.; Fu, C. Thermal expansion anisotropy and site occupation of the pseudo-binary molybdenum vanadium silicide Mo5Si3–V5Si3. Acta Mater. 2005, 53, 2431–2437. [Google Scholar] [CrossRef]
- Mendiratta, M.G.; Parthasarathy, T.A.; Dimiduk, D.M. Oxidation behavior of aMo–Mo3Si–Mo5SiB2 (T2) three phase system. Intermetallics 2002, 10, 225–232. [Google Scholar] [CrossRef]
- Parthasarathy, T.; Mendiratta, M.; Dimiduk, D. Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys. Acta Mater. 2002, 50, 1857–1868. [Google Scholar] [CrossRef]
Phase | Lattice Parameter | Space Group | Database | ||
---|---|---|---|---|---|
a | b | c | |||
V | 3.03 Å | 3.03 Å | 3.03 Å | 229 | NSD |
V3Si | 4.72 Å | 4.72 Å | 4.72 Å | 223 | NSD |
V3B2 | 5.75 Å | 5.75 Å | 3.04 Å | 127 | ICSD |
V5SiB2 | 5.81 Å | 5.81 Å | 10.79 Å | 140 | ICSD |
VB | 3.10 Å | 8.17 Å | 2.98 Å | 63 | ICSD |
V5Si3 | 7.14 Å | 7.14 Å | 4.84 Å | 193 | NSD |
VSi2 | 4.57 Å | 4.57 Å | 6.37 Å | 180 | NSD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasemann, G.; Harris, C.; Krüger, M.; Perepezko, J.H. Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation. Materials 2020, 13, 4099. https://doi.org/10.3390/ma13184099
Hasemann G, Harris C, Krüger M, Perepezko JH. Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation. Materials. 2020; 13(18):4099. https://doi.org/10.3390/ma13184099
Chicago/Turabian StyleHasemann, Georg, Chad Harris, Manja Krüger, and John H. Perepezko. 2020. "Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation" Materials 13, no. 18: 4099. https://doi.org/10.3390/ma13184099
APA StyleHasemann, G., Harris, C., Krüger, M., & Perepezko, J. H. (2020). Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation. Materials, 13(18), 4099. https://doi.org/10.3390/ma13184099