Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Supercritical CO2 Drying
2.3. Conventional Kiln Drying and Oven-Drying
2.4. Moisture Content
2.5. Shrinkage
2.6. Moisture Distribution
2.7. Drying Stress
3. Results and Discussion
3.1. Drying Rate
3.2. Shrinkage
3.3. Moisture Distribution
3.4. Drying Stress
4. Error Analysis
5. Conclusions
- In the wood initial drying stage, compared with CKD and OD, the SCD had the highest drying rate. After drying for 1 h, the MC of specimens dropped very rapidly by SCD, the MC of the short specimens decreased from 108% to 51%, and the long specimens decreased from 112% to 57%. The drying rate of SCD was nine times that of CKD and one time of OD.
- Due to its strong solubility and transfer capability, ScCO2 can reduce the capillary tension, thus achieving the effect of inhibiting wood collapse. The shrinkage rate of short and long specimens was 0.855% and 0.191%, respectively, both lower than the values of CKD and OD.
- However, the drying stress generated by SCD was relatively higher due to the uneven moisture distribution. The drying stress index of short specimens and long specimens was 0.59% and 0.38%, five and three times of CKD and OD, respectively.
- Regardless of the drying method, due to the shorter free water migration distance and faster migration speed, the short specimens had the following rules compared with the long specimens: a faster drying rate, greater shrinkage rate, and greater drying stress. That is, shorter specimens had a shorter drying period but greater drying defects than the long specimens.
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.; Liu, J.L.; Lv, W.H. Thermal degradation and fire performance of wood treated with PMUF resin and boron compounds. Fire Mater. 2017, 41, 1051–1057. [Google Scholar] [CrossRef]
- Yue, K.; Wu, J.H.; Xu, L.Q.; Tang, Z.Q.; Chen, Z.J.; Liu, W.Q.; Wang, L. Use impregnation and densification to improve mechanical properties and combustion performance of Chinese fir. Constr. Build. Mater. 2020, 241, 118101–118109. [Google Scholar] [CrossRef]
- Xiao, M.Z.; Chen, W.J.; Hong, S.; Pang, B.; Cao, X.F.; Wang, Y.Y.; Yuan, T.Q.; Sun, R.C. Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus. Int. J. Biol. Macromol. 2019, 138, 519–527. [Google Scholar] [CrossRef]
- Xie, Y.J.; Arnold, R.J.; Wu, Z.H.; Chen, S.F.; Du, A.P.; Luo, J.Z. Advances in eucalypt research in China. Front. Agric. Sci. Eng. 2017, 4, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Hansmann, C.; Stingl, R.; Prieto, O.G.; Lopez, C.B.; Resch, H. High-frequency energy–assisted vacuum drying of fresh eucalyptus globulus. Dry. Technol. 2008, 26, 611–616. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Miao, P.; Zhuang, S.Z.; Wang, X.M.; Xia, J.W.; Wu, L.M. Improving the dry-Ability of Eucalyptus by pre-microwave or pre-freezing treatment (in Chinese). J. Nanjing For. Univ. (Nat. Sci. Ed.) 2011, 35, 61–64. [Google Scholar] [CrossRef]
- Phonetip, K.; Brodie, G.I.; Ozarska, B.; Belleville, B. Drying timber in a solar kiln using an intermittent drying schedule of conventional laboratory kiln. Dry. Technol. 2017, 37, 1300–1312. [Google Scholar] [CrossRef]
- Shen, Y.H.; Gao, Z.Z.; Hou, X.F.; Chen, Z.Y.; Jiang, J.Y.; Sun, J. Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods. Dry. Technol. 2020, 38, 313–320. [Google Scholar] [CrossRef]
- Franich, R.A.; Gallagher, S.; Kroese, H. Dewatering green sapwood using dioxide cycled between supercritical fluid and gas phase. J. Supercrit. Fluids. 2014, 89, 113–118. [Google Scholar] [CrossRef]
- Meder, R.; Franich, R.A.; Callaghan, P.T.; Behr, V.C. A comparative study of dewatering of pinus radiata sapwood using supercritical CO2 and conventional forced air-drying via in situ magnetic resonance microimaging (MRI). Holzforschung 2015, 69, 1137–1142. [Google Scholar] [CrossRef]
- Newman, R.H.; Franich, R.A.; Meder, R.; Hill, S.J.; Kroese, H.; Sandquist, D.; Hindmarsh, J.P.; Schmid, M.W.; Fuchs, J.; Behr, V.C. Proton magnetic resonance imaging used to investigate dewatering of green sapwood by cycling carbon dioxide between supercritical fluid and gas phase. J. Supercrit. Fluids 2016, 111, 36–42. [Google Scholar] [CrossRef]
- Cabeza, L.F.; De Gracia, A.; Fernández, A.I.; Farid, M.M. Supercritical CO2 as heat transfer fluid: A review. Appl. Therm. Eng. 2017, 125, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Wentzel-Vietheer, M.; Washusen, R.; Downes, G.M.; Harwood, C.; Ebdon, N.; Ozarska, B.; Baker, T. Prediction of non-recoverable collapse in Eucalyptus globulus from near infrared scanning of radial wood samples. Eur. J. Wood Prod. 2013, 71, 755–768. [Google Scholar] [CrossRef]
- Chafe, S.C. The distribution and interrelationship of collapse, volumetric shrinkage, moisture content and density in trees of Eucalyptus regnans F. Muell. Wood Sci. Technol. 1985, 19, 329–345. [Google Scholar] [CrossRef]
- Dawson, B.S.W.; Pearson, H.; Kimberley, M.O.; Davy, B.; Dickson, A.R. Effect of supercritical CO2 treatment and kiln drying on collapse in Eucalyptus nitens wood. Eur. J. Wood Wood Prod. 2020, 78, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, H.H.; Cai, Y.C.; Wu, Z.H. A novel method of studying the collapsed cell of eucalyptus wood using X-ray CT scanning. Dry. Technol. 2019, 37, 1597–1604. [Google Scholar] [CrossRef]
- Chafe, S.C. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species (Part 1). Wood Sci. Technol. 1986, 20, 293–307. [Google Scholar] [CrossRef]
- Chafe, S.C. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species (Part 2). Wood Sci. Technol. 1987, 21, 27–41. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A.S. Effect of methyltrimethoxysilane impregnation on the cell wall porosity and water vapour sorption of archaeological waterlogged oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, H.H. A review of Eucalyptus wood collapse and its control during drying. BioResources 2018, 13, 2171–2181. [Google Scholar] [CrossRef]
- Kong, L.L.; Zhao, Z.J.; He, Z.B.; Yi, S.L. Development of schedule to steaming prior to drying and its effects on Eucalyptus grandis × E. urophylla wood. Eur. J. Wood Prod. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Jones, S.P.P.; Slater, N.K.H.; Jones, M.; Ward, K.; Smith, A.D. Investigating the processes necessary for satisfactory freeze-drying of waterlogged archaeological wood. J. Archaeol. Sci. 2009, 10, 2177–2183. [Google Scholar] [CrossRef]
- Dawson, B.S.W.; Pearson, H. Effect of supercritical CO2 dewatering followed by oven-drying of softwood and hardwood timbers. Wood Sci. Technol. 2017, 51, 771–784. [Google Scholar] [CrossRef]
- Behr, V.C.; Hill, S.J.; Meder, R.; Sandquist, D.; Hindmarsh, J.P.; Franich, R.A.; Newman, R.H. Carbon-13 NMR chemical-shift imaging study of dewatering of green sapwood by cycling carbon dioxide between the supercritical fluid and gas phases. J. Supercrit. Fluids 2014, 95, 535–540. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Fu, Z.Y.; Jia, X.R.; Cai, Y.C. Modeling conventional drying of wood: Inclusion of a moving evaporation interface. Dry. Technol. 2016, 34, 530–538. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, J.X.; Dong, C.L.; Zhan, T.Y.; Jiang, J.H.; Luo, B. Mathematical model of heat and moisture transfer in alder birch wood during the thermo-vacuum treatment and its application in the quantitative control of the wood color. Dry. Technol. 2016, 34, 1567–1582. [Google Scholar] [CrossRef]
- Dawson, B.S.W.; Pearon, H.; Kroese, H.W.; Sargent, R. Effect of specimen dimension and pre-heating temperature on supercritical CO2 dewatering of radiata pine sapwood. Holzforschung 2015, 69, 421–430. [Google Scholar] [CrossRef]
- Wang, X.M.; He, Q.; Zhao, X.L. Study on drying and collapse properties of Eucalypts plantation (in Chinese). J. Inner Mongolia Agric. Univ. Nat. Sci. Ed. 2013, 34, 123–127. [Google Scholar] [CrossRef]
- China Standards Publication. Method for Determination of the Moisture Content of Wood; China Standards Press: Beijing, China, 2009; GB/T 1931-2009. [Google Scholar]
- Lee, N.H.; Li, C.Y.; Zhao, X.F.; Park, M.J. Effect of pretreatment with high temperature and low humidity on drying time and prevention of checking during radio-frequency/vacuum drying of Japanese cedar pillar. J. Wood Sci. 2010, 56, 19–24. [Google Scholar] [CrossRef]
- China Standards Publication. Drying Quality of Sawn Timber; China Standards Press: Beijing, China, 2012; GB/T 6491-2012. [Google Scholar]
- Wang, Z.; Zhou, Q.; Guo, H.R.; Yang, P.R.; Lu, W.J. Determination of water solubility in supercritical CO2 from 313.15 to 473.15 K and from 10 to 50 MPa by in-situ quantitative Raman spectroscopy. Fluid Phase Equilib. 2018, 476, 170–178. [Google Scholar] [CrossRef]
- Alkan, S.; Zhang, Y.L.; Lam, F. Moisture Distribution Changes and Wetwood Behavior in Subalpine Fir Wood during Drying Using High X-Ray Energy Industrial CT Scanner. Dry. Technol. 2007, 25, 483–488. [Google Scholar] [CrossRef]
- Kang, C.W.; Muszyński, L.; Hong, S.H.; Kang, H.Y. Preliminary tests for the application of an optical measurement system for the development of a kiln-drying schedule. Dry. Technol. 2016, 34, 483–490. [Google Scholar] [CrossRef]
- Moutee, M.; Fafard, M.; Fortin, Y.; Laghdir, A. Modeling the creep behavior of wood cantilever loaded at free end during drying. Wood Fiber Sci. 2005, 37, 521–534. [Google Scholar] [CrossRef]
- Moutee, M.; Fortin, Y.; Fafard, M. A global rheological model of wood cantilever as applied to wood drying. Wood Sci. Technol. 2007, 41, 209–234. [Google Scholar] [CrossRef]
- Zhou, F.; Fu, Z.Y.; Zhou, Y.D.; Zhao, J.Y.; Gao, X.; Jiang, J.H. Moisture transfer and stress development during high-temperature drying of Chinese fir. Dry. Technol. 2020, 38, 545–554. [Google Scholar] [CrossRef]
- Cheng, W.L.; Liu, Y.X.; Morooka, T.; Norimoto, M. Characteristics of shrinkage stress of wood during drying under high temperature and high pressure steam conditions (in Chinese). J. Beijing For. Univ. 2005, 27, 1–106. [Google Scholar] [CrossRef]
Process Parameter | Value |
---|---|
Maximum pressure (MPa) | 30 |
Minimum pressure (MPa) | 0.1 (atmospheric pressure) |
Pressurization time (min) | 30 |
Depressurization time (min) | 10 |
Temperature (°C) | 45 |
Hold time (min) | 15 |
Number of cycles | 4 |
Drying | Specimen Length (mm) | Initial MC (%) | Final MC (%) | Drying Time (min) | Drying Rate (%·min−1) |
---|---|---|---|---|---|
SCD | 50 | 108.8 | 51.7 | 60 | 0.952 |
100 | 112.2 | 57.2 | 60 | 0.917 | |
CKD | 50 | 130.3 | 123.2 | 60 | 0.118 |
100 | 123.0 | 117.5 | 60 | 0.091 | |
OD | 50 | 133.5 | 81.6 | 60 | 0.865 |
100 | 138.8 | 100.1 | 60 | 0.644 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor A (Drying method) | 2 | 1.6497 | 0.8249 | 832.6613 | 4.6267 × 10−8 |
Factor B (Specimen length) | 1 | 0.0482 | 0.0482 | 48.6187 | 4.3255 × 10−4 |
Interaction | 2 | 0.0190 | 0.0095 | 9.5664 | 0.0136 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor A (Drying method) | 2 | 18.4091 | 9.2046 | 42.0469 | 0.0003 |
Factor B (Specimen length) | 1 | 0.4497 | 0.4497 | 2.0542 | 0.2018 |
Interaction | 2 | 0.1967 | 0.0979 | 0.4471 | 0.0016 |
Factor | Drying Method | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|---|
Final MC | SCD | 1 | 18.0192 | 18.0192 | 5.3058 | 0.0061 |
CKD | 1 | 9.0640 | 9.0640 | 4.1755 | 0.7160 | |
OD | 1 | 4.2689 | 4.2689 | 1.0194 | 0.9020 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor A (Drying method) | 2 | 12.9233 | 6.4617 | 3.0174 | 0.0368 |
Factor B (Specimen length) | 1 | 6.3151 | 6.3151 | 5.0654 | 0.8068 |
Interaction | 2 | 18.6329 | 9.3165 | 5.0964 | 0.9095 |
Source | DF | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Factor A (Drying method) | 2 | 0.3871 | 0.1935 | 20.1584 | 0.0022 |
Factor B (Specimen length) | 1 | 0.0434 | 0.0434 | 4.5241 | 0.0775 |
Interaction | 2 | 0.0138 | 0.0069 | 0.7177 | 0.5255 |
Drying Characteristics | Drying Method | Specimen Length (mm) | Sum of the Squared Errors | Standard Deviation |
---|---|---|---|---|
Drying rate | SCD | 50 | 0.004 | 0.047 |
100 | 0.001 | 0.016 | ||
CKD | 50 | 0.001 | 0.020 | |
100 | 0.000 | 0.003 | ||
OD | 50 | 0.000 | 0.007 | |
100 | 0.000 | 0.008 | ||
Shrinkage | SCD | 50 | 0.001 | 0.028 |
100 | 0.008 | 0.065 | ||
CKD | 50 | 0.005 | 0.048 | |
100 | 0.001 | 0.026 | ||
OD | 50 | 0.004 | 0.043 | |
100 | 0.002 | 0.030 | ||
Drying stress | SCD | 50 | 0.018 | 0.095 |
100 | 0.015 | 0.087 | ||
CKD | 50 | 0.010 | 0.072 | |
100 | 0.000 | 0.014 | ||
OD | 50 | 0.012 | 0.077 | |
100 | 0.001 | 0.027 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.-W.; Liu, H.-H.; Yang, H.; Yang, L. Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2. Materials 2020, 13, 3989. https://doi.org/10.3390/ma13183989
Zhang J-W, Liu H-H, Yang H, Yang L. Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2. Materials. 2020; 13(18):3989. https://doi.org/10.3390/ma13183989
Chicago/Turabian StyleZhang, Jing-Wen, Hong-Hai Liu, Hang Yang, and Lin Yang. 2020. "Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2" Materials 13, no. 18: 3989. https://doi.org/10.3390/ma13183989
APA StyleZhang, J.-W., Liu, H.-H., Yang, H., & Yang, L. (2020). Drying Characteristics of Eucalyptus urophylla × E. grandis with Supercritical CO2. Materials, 13(18), 3989. https://doi.org/10.3390/ma13183989