Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting–Drying Cycles
Abstract
1. Introduction
2. Experimental Program
2.1. Test Specimens
2.2. Material Properties
2.3. Loading and Exposure Conditions
2.4. Determination of Chloride Content
2.5. Cross-Sectional Loss
3. Experimental Results and Discussion
3.1. Chloride Profiles
3.2. Effect of the Water–Cement Ratio on Chloride Concentration
3.3. Corrosion Maps
3.4. Cross-Sectional Loss Distribution of Steel Bars
3.5. Effect of Crack Width on the Chloride Diffusion Coefficient
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glass, G.; Buenfeld, N. The presentation of the chloride threshold level for corrosion of steel in concrete. Corros. Sci. 1997, 39, 1001–1013. [Google Scholar] [CrossRef]
- Bartolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis; Repair; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Climent, M.A.; de Vera, G.; López, J.F.; Viqueira, E.; Andrade, C. A test method for measuring chloride diffusion coefficients through nonsaturated concrete: Part I. The instantaneous plane source diffusion case. Cem. Concr. Res. 2002, 32, 1113–1123. [Google Scholar] [CrossRef]
- de Vera, G.; Climent, M.A.; Viqueira, E.; Antón, C.; Andrade, C. A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II: The instantaneous plane source diffusion case with chloride binding consideration. Cem. Concr. Res. 2007, 37, 714–724. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Petković, J.; Dangla, P.; Baroghel-Bouny, V. Modelling of coupled ion and moisture transport in porous building materials. Constr. Build. Mater. 2008, 22, 2185–2195. [Google Scholar] [CrossRef]
- Pradelle, S.; Thiéry, M.; Baroghel-Bouny, V. Comparison of existing chloride ingress models within concretes exposed to seawater. Mater. Struct. 2016, 49, 4497–4516. [Google Scholar] [CrossRef]
- Jin, W.; Yuan, Y.; Wei, J.; Wang, H. Durability Theory and Design Method of Concrete Structure Under Chloride Environment; Science Press: Beijing, China, 2011. [Google Scholar]
- Shaikh, F.U.A. Effect of cracking on corrosion of steel in concrete. Int. J. Concr. Struct. Mater. 2018, 12, 3. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Otsuki, N.; Hisada, M.; Shibata, T. Effect of crack width and bar types on corrosionof steel in concrete. J. Mater. Civ. Eng. 2001, 13, 194–201. [Google Scholar] [CrossRef]
- China Architecture and Building Press. National Standard of the People’s Republic of China, Code for Design of Concrete Structures; China Architecture and Building Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Gowripalan, N.; Sirivivatnanon, V.; Lim, C. Chloride diffusivity of concrete cracked in flexure. Cem. Concr. Res. 2000, 30, 725–730. [Google Scholar] [CrossRef]
- Win, P.P.; Watanabe, M.; Machida, A. Penetration profile of chloride ion in cracked reinforced concrete. Cem. Concr. Res. 2004, 34, 1073–1079. [Google Scholar] [CrossRef]
- François, R.; Arliguie, G. Influence of service cracking on reinforcement steel corrosion. J. Mater. Civ. Eng. 1998, 10, 14–20. [Google Scholar] [CrossRef]
- Yu, L.; François, R.; Dang, V.H.; l’Hostis, V.; Gagné, R. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions. Cem. Concr. Res. 2015, 67, 246–258. [Google Scholar] [CrossRef]
- Aldea, C.-M.; Shah, S.P.; Karr, A. Effect of cracking on water and chloride permeability of concrete. J. Mater. Civ. Eng. 1999, 11, 181–187. [Google Scholar] [CrossRef]
- Djerbi, A.; Bonnet, S.; Khelidj, A.; Baroghel-Bouny, V. Influence of traversing crack on chloride diffusion into concrete. Cem. Concr. Res. 2008, 38, 877–883. [Google Scholar] [CrossRef]
- Rodriguez, O.G. Influence of Cracks on Chloride Ingress into Concrete; National Library of Canada—Bibliothèque Nationale du Canada: Ottawa, QC, Canada, 2001.
- Jang, S.Y.; Kim, B.S.; Oh, B.H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem. Concr. Res. 2011, 41, 9–19. [Google Scholar] [CrossRef]
- Arya, C.; Ofori-Darko, F. Influence of crack frequency on reinforcement corrosion in concrete. Cem. Concr. Res. 1996, 26, 345–353. [Google Scholar] [CrossRef]
- Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros. Sci. 2013, 77, 308–321. [Google Scholar] [CrossRef]
- Otieno, M.; Alexander, M.; Beushausen, H.-D. Corrosion in cracked and uncracked concrete–influence of crack width, concrete quality and crack reopening. Mag. Concr. Res. 2010, 62, 393–404. [Google Scholar] [CrossRef]
- Schießl, P.; Raupach, M. Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete. Mater. J. 1997, 94, 56–61. [Google Scholar]
- American Concrete Institute. ACI Committee 224 Report, Control of Cracking in Concrete Structures; American Concrete Institute: Detroit, MI, USA, 1994. [Google Scholar]
- CEB. Studies and calculations on the influence of crack width. In CEB—FIP Model Code 1990; T. Telford: London, UK, 1993. [Google Scholar]
- British Standards Institution. Structural Use of Concrete—Part 1: Code of Practice for Design and Construction; BS 8110; British Standards Institution: London, UK, 1997. [Google Scholar]
- British Standards Institution. Eurocode 2: Design of Concrete Structures—Part 1: General Rules and Rules for Buildings; ENV 1998-1-1; British Standards Institution: London, UK, 2004. [Google Scholar]
- François, R.; Khan, I.; Dang, V.H. Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Mater. Struct. 2013, 46, 899–910. [Google Scholar] [CrossRef]
- Standardization Administration of China. Corrosion Tests in Artificial Atmospheres—Salt Spray Tests; GBT 10125-2012; Standardization Administration of China (SAC): Beijing, China, 2012. (In Chinese) [Google Scholar]
- Ministry of Communications of China. Testing Code of Concrete for Port and Waterway Engineering; JTJ 270-98; Ministry of Communications of China: Beijing, China, 1998. (In Chinese)
- Chamberlin, W.P.; Irwin, R.J.; Amsler, D.E. Waterproofing Membranes for Bridge Deck Rehabilitation; Transportation Research Board: Washington, DC, USA, 1977. [Google Scholar]
- Pfeifer, D.W.; Landgren, J.R.; Zoob, A. Protective Systems for New Prestressed and Substructure Concrete; US Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1987.
- California Transportation Laboratory; Stratfull, R.; Jurkovich, W.; Spellman, D. Corrosion Testing of Bridge Decks; The Laboratory: Sacramento, CA, USA, 1975. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J. Concrete Microstructure, Properties and Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Lu, C.; Yang, J.; Li, H.; Liu, R. Experimental studies on chloride penetration and steel corrosion in cracked concrete beams under drying-wetting cycles. J. Mater. Civ. Eng. 2017, 29, 04017114. [Google Scholar] [CrossRef]
- Gummerson, R.; Hall, C.; Hoff, W.; Hawkes, R.; Holland, G.; Moore, W. Unsaturated water flow within porous materials observed by NMR imaging. Nature 1979, 281, 56–57. [Google Scholar] [CrossRef]
- Lay, S.; SchieBl, P.; Cairns, J. Service Life Models: Instructions on Methodology and Application of Models for the Prediction of the Residual Service Life for Classified Environmental Loads and Types of Structures in Europe; LIFECON Project, Deliverable D3.2; Contract G1RD-CT-2000-00378; Technical University of Munich: Munich, Germany, 2003; p. 169. [Google Scholar]
- Collepardi, M.; Marcialis, A.; Turriziani, R. Penetration of chloride ions into cement pastes and concretes. J. Am. Ceram. Soc. 1972, 55, 534–535. [Google Scholar] [CrossRef]
- Kwon, S.J.; Na, U.J.; Park, S.S.; Jung, S.H. Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Struct. Saf. 2009, 31, 75–83. [Google Scholar] [CrossRef]
Specimen | W/C | Water (kg/m3) | Cement (kg/m3) | Sand (kg/m3) | Rolled Gravel (kg/m3) | 28-Day Cube Compressive Strength (MPa) | COV |
---|---|---|---|---|---|---|---|
A1 | 0.3 | 182 | 606 | 1030 | 1988 | 54.9 | 0.041 |
A2 | 0.35 | 182 | 520 | 874 | 1695 | 52.0 | 0.037 |
B | 0.4 | 182 | 455 | 755 | 1465 | 49.8 | 0.048 |
Code | Maximum Allowable Crack Width (mm) |
---|---|
ACI Manual [23] | 0.15 |
CEB/FIP Model Code [24] | 0.3 |
BS 8110 [25] | 0.3 |
ENV 1998-1-1 [26] | 0.3 |
Code for Design of Concrete Structures [10] | 0.2 |
Beam | W/C | Test Days (Days) | Load Value, P/Pu (%) | Loading Mode |
---|---|---|---|---|
A1 | 0.3 | 182 | 37.6 | Self-anchored |
A2 | 0.35 | 37.6 | Self-anchored | |
B-01-1 | 0.4 | 182 | 0 | No-loading |
B-01-2 | 23.6 | Self-anchored | ||
B-01-3 | 36.7 | Self-anchored | ||
B-02-1 | 0.4 | 364 | 0 | No-loading |
B-02-2 | 23.6 | Self-anchored | ||
B-02-3 | 36.7 | Self-anchored |
Beam Series | w (mm) | D (×10−12 m2/s) | Cs (%) | R2 | μexp | μcal | μcal/μexp |
---|---|---|---|---|---|---|---|
B-01-1 | 0 | 0.4410 | 0.5338 | 0.9812 | 1.000 | 1.033 | 1.033 |
B-02-1 | 0 | 0.1427 | 0.5005 | 0.9692 | 1.000 | 1.016 | 1.016 |
B-01-2 | 0.05 | 1.1386 | 0.4254 | 0.964 | 2.587 | 2.282 | 0.882 |
0.08 | 1.3501 | 0.4098 | 0.9743 | 3.068 | 3.031 | 0.988 | |
0.11 | 1.5086 | 0.4135 | 0.9552 | 3.428 | 3.781 | 1.103 | |
B-01-3 | 0.12 | 1.6387 | 0.4439 | 0.9465 | 3.723 | 4.031 | 1.082 |
0.15 | 1.9827 | 0.4166 | 0.9053 | 4.505 | 4.780 | 1.061 | |
0.2 | 2.5495 | 0.5183 | 0.9415 | 5.793 | 6.029 | 1.041 | |
0.21 | 2.7975 | 0.5662 | 0.9536 | 6.356 | 6.279 | 0.988 | |
B-02-2 | 0.04 | 0.3715 | 0.4389 | 0.9811 | 2.603 | 2.000 | 0.768 |
0.08 | 0.4861 | 0.4399 | 0.9433 | 3.406 | 2.983 | 0.876 | |
0.1 | 0.5138 | 0.4895 | 0.9812 | 3.601 | 3.475 | 0.965 | |
B-02-3 | 0.12 | 0.5591 | 0.4344 | 0.9367 | 3.918 | 3.967 | 1.013 |
0.16 | 0.7157 | 0.5032 | 0.9106 | 5.015 | 4.951 | 0.987 | |
0.18 | 0.7011 | 0.5397 | 0.9684 | 4.913 | 5.442 | 1.108 | |
0.2 | 0.8101 | 0.5061 | 0.9525 | 5.677 | 5.934 | 1.045 | |
0.22 | 0.8982 | 0.5843 | 0.9788 | 6.294 | 6.426 | 1.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Cai, J.; Chen, Q.-J.; He, A.; Wei, M.-Y. Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting–Drying Cycles. Materials 2020, 13, 3801. https://doi.org/10.3390/ma13173801
Lai J, Cai J, Chen Q-J, He A, Wei M-Y. Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting–Drying Cycles. Materials. 2020; 13(17):3801. https://doi.org/10.3390/ma13173801
Chicago/Turabian StyleLai, Jun, Jian Cai, Qing-Jun Chen, An He, and Mu-Yang Wei. 2020. "Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting–Drying Cycles" Materials 13, no. 17: 3801. https://doi.org/10.3390/ma13173801
APA StyleLai, J., Cai, J., Chen, Q.-J., He, A., & Wei, M.-Y. (2020). Influence of Crack Width on Chloride Penetration in Concrete Subjected to Alternating Wetting–Drying Cycles. Materials, 13(17), 3801. https://doi.org/10.3390/ma13173801