Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Origin of the Simplified Formulas
3.2. Irreversible Hydrogen Trapping Sites
3.3. Reversible Hydrogen Trapping Sites
3.4. Multiple and Partial Permeation Tests
3.5. Delayed Lag Time Method
4. Summary
Author Contributions
Funding
Conflicts of Interest
Data Availability Statement
References
- Paxton, A.T.; Sutton, A.P.; Finnis, M.W. The challenges of hydrogen and metals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-S.; Lu, H.Z.; Liang, J.T.; Rosenthal, A.; Liu, H.W.; Sneddon, G.; McCarroll, I.; Zhao, Z.Z.; Li, W.; Guo, A.; et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science 2020, 367, 171–175. [Google Scholar] [PubMed]
- Xie, D.; Li, S.; Li, M.; Wang, Z.; Gumbsch, P.; Sun, J.; Ma, E.V.; Li, J.; Shan, Z.W. Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 2016, 7, 13341. [Google Scholar] [CrossRef] [PubMed]
- Yumashev, A.; Slusarczyk, B.; Kondrashev, S.; Mikhaylov, A. Global Indicators of Sustainable Development: Evaluation of the Influence of the Human Development Index on Consumption and Quality of Energy. Energies 2020, 13, 2768. [Google Scholar] [CrossRef]
- Yumashev, A.; Mikhaylov, A. Development of polymer film coatings with high adhesion to steel alloys and high wear resistance. Polym. Compos. 2020, 41, 2875–2880. [Google Scholar] [CrossRef]
- Liu, Q.L.; Venezuela, J.; Zhang, M.-X.; Zhou, Q.J.; Atrens, A. Hydrogen trapping in some advanced high strength steels. Corros. Sci. 2016, 111, 770–785. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, G.; Peral, L.B.; Rodríguez, C.; García, T.E.; Belzunce, F.J. Hydrogen embrittlement of structural steels: Effect of the displacement rate on the fracture toughness of high-pressure hydrogen pre-charged samples. Int. J. Hydrogen Energy 2019, 44, 15634–15643. [Google Scholar] [CrossRef]
- Venezuela, Q.J.; Zhou, Q.J.; Liu, Q.L.; Zhang, M.-X.; Atrens, A. Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions. Corros. Sci. 2016, 111, 602–624. [Google Scholar] [CrossRef] [Green Version]
- Venezuela, J.; Blanch, J.; Zulkiply, A.; Liu, Q.L.; Atrens, A. Further study of the hydrogen embrittlement of martensitic advanced high-strength steel in simulated auto service conditions. Corros. Sci. 2018, 135, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Q.; Wan, J.F.; Zhao, Q.Y.; Liu, J.; Li, X.G. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros. Sci. 2019, 164, 108345. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 270, 90–102. [Google Scholar] [CrossRef]
- Devanathan, M.A.V.; Stachurski, Z. The Mechanism of Hydrogen Evolution on Iron in Acid Solutions by Determination of Permeation Rates. J. Electrochem. Soc. 1964, 111, 619–623. [Google Scholar] [CrossRef]
- Addach, H.; Berçot, P.; Rezrazi, M.; Wery, M. Hydrogen permeation in iron at different temperatures. Mater. Lett. 2005, 59, 1347–1351. [Google Scholar] [CrossRef]
- Enomoto, M.; Hirakami, D.; Tarui, T. Modeling Thermal Desorption Analysis of Hydrogen in Steel. ISIJ Int. 2006, 46, 1381–1387. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, L.; Pecko, D.; Mamme, M.H.; Van Laethem, D.; DePover, T.; Eeckhout, E.V.; Steen, N.V.; Ozdirik, B.; Verbeken, K.; Van Ingelgem, Y.; et al. Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell. Corros. Sci. 2019, 154, 231–238. [Google Scholar] [CrossRef]
- Zhang, T.M.; Zhao, W.M.; Li, T.T.; Zhao, Y.J.; Deng, Q.S.; Wang, Y.; Jiang, W.C. Comparison of hydrogen embrittlement susceptibility of three cathodic protected sub sea pipeline steels from a point of view of hydrogen permeation. Corros. Sci. 2018, 131, 104–115. [Google Scholar] [CrossRef]
- Assis, K.S.; Schuabb, C.G.C.; Lage, M.A.; Gonçalves, M.P.P.; Pereira-Dias, D.; Mattos, O.R. Slow strain rate tests coupled with hydrogen permeation: New possibilities to assess the role of hydrogen in stress corrosion cracking tests part I: Methodology and commissioning results. Corros. Sci. 2019, 152, 45–53. [Google Scholar] [CrossRef]
- Zakroczymski, T. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals. Electrochim. Acta 2006, 51, 2261–2266. [Google Scholar] [CrossRef]
- Cheng, L.; Li, L.; Zhang, X.; Liu, J.; Wu, K.M. Numerical simulation of hydrogen permeation in steels. Electrochim. Acta 2018, 270, 77–86. [Google Scholar] [CrossRef]
- Winzer, N.; Rott, O.; Thiessen, R.; Thomas, I.; Mraczek, K. Hydrogen diffusion and trapping in Ti-modified advanced high strength steels. Mater. Des. 2016, 92, 450–461. [Google Scholar] [CrossRef]
- Turnbull, A.; Carroll, M.W.; Ferriss, D.H. Analysis of hydrogen diffusion and trapping in a 13% chromium martensitic stainless steel. Acta Met. 1989, 37, 2039–2046. [Google Scholar] [CrossRef]
- Fallahmohammadi, E.; Bolzoni, F.; Lazzari, L. Measurement of lattice and apparent diffusion coefficient of hydrogen in X65 and F22 pipeline steels. Int. J. Hydrogen Energy 2013, 38, 2531–2543. [Google Scholar] [CrossRef]
- Haq, A.J.; Muzaka, K.; Dunne, D.P.; Calka, A.; Pereloma, E.V. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels. Int. J. Hydrogen Energy 2013, 38, 2544–2556. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhang, T.; Zhao, Y.; Sun, J.; Wang, Y. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment. Corros. Sci. 2016, 111, 84–97. [Google Scholar] [CrossRef]
- Zakroczymski, T.; Fan, C.-J.; Szklarska-Smialowska, Z. Kinetics and Mechanism of Passive Film Formation on Iron in 0.05M NaOH. J. Electrochem. Soc. 1985, 132, 2862. [Google Scholar] [CrossRef]
- Liu, Q.; Atrens, A. Reversible hydrogen trapping in a 3.5NiCrMoV medium strength steel. Corros. Sci. 2015, 96, 112–120. [Google Scholar] [CrossRef]
- McNabb, A.; Foster, P.K. A New Analysis of the Diffusion of Hydrogen in Iron and Ferritic Steels. Trans. Met. Soc. AIME 1963, 227, 618–627. [Google Scholar]
- Oriani, R.A. The diffusion and trapping of hydrogen in steel. Acta Met. 1970, 18, 147–157. [Google Scholar] [CrossRef]
- Frappart, S.; Feaugas, X.; Creus, J.; Thébault, F.; Delattre, L.; Marchebois, H. Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test. J. Phys. Chem. Solids 2010, 71, 1467–1479. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhang, K.; Li, W.; Jin, X. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels. Mater. Sci. Eng. A 2016, 658, 400–408. [Google Scholar] [CrossRef]
- Dong, C.F.; Li, X.G.; Liu, Z.Y. Hydrogen-induced cracking and healing behavior of X70 steel. J. Alloys Compd. 2009, 484, 966–972. [Google Scholar] [CrossRef]
- Araújo, D.F.; Vilar, E.O.; Carrasco, J.P. A critical review of mathematical models used to determine the density of hydrogen trapping sites in steels and alloys. Int. J. Hydrogen Energy 2014, 39, 12194–12200. [Google Scholar] [CrossRef]
- Yen, S.K.; Huang, I.B. Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel. Mater. Chem. Phys. 2003, 80, 662–666. [Google Scholar] [CrossRef]
- Xue, H.B.; Cheng, Y.F. Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld. J. Mater. Eng. Perform. 2013, 22, 170–175. [Google Scholar] [CrossRef]
- Kumnick, A.J.; Johnson, H.H. Deep trapping states for hydrogen in deformed iron. Acta Met. 1980, 28, 33–39. [Google Scholar] [CrossRef]
- Gan, L.; Huang, F.; Zhao, X.; Liu, J.; Cheng, Y.F. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments. Int. J. Hydrogen Energy 2018, 43, 2293–2306. [Google Scholar] [CrossRef]
- Mohtadi-Bonab, A.; Szpunar, J.A.; Razavi-Tousi, S. Hydrogen induced cracking susceptibility in different layers of a hot rolled X70 pipeline steel. Int. J. Hydrogen Energy 2013, 38, 13831–13841. [Google Scholar] [CrossRef]
- Xue, H.B.; Cheng, Y.F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros. Sci. 2011, 53, 1201–1208. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.H.; Luo, M.; Liu, Y.H.; Dong, X.M.; Jiang, H.; Cao, G.-H. Influence of cooling path after rolling on sulfide stress cracking behavior for casing steel. Int. J. Hydrogen Energy 2020, 45, 1114–1124. [Google Scholar] [CrossRef]
- Frappart, S.; Feaugas, X.; Creus, J.; Thébault, F.; Marchebois, H. Hydrogen solubility, diffusivity and trapping in a tempered Fe–C–Cr martensitic steel under various mechanical stress states. Mater. Sci. Eng. A 2012, 534, 384–393. [Google Scholar] [CrossRef]
- Frappart, S.; Oudriss, A.; Feaugas, X.; Creus, J.; Bouhattate, J.; Thébault, F.; Delattre, L.; Marchebois, H. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scr. Mater. 2011, 65, 859–862. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, Q. Effect of traps on diffusivity of hydrogen in 20g clean steel. Acta Metall. Sin. 2011, 47, 548–552. [Google Scholar]
Input Values | Trapping sites density, 4.89 × 1024 m−3 | 0 | 1 | 10 |
C0, part per million(ppm) | 1 | 1 | 1 | |
1 + 3α/β | - | 4.00 | 30.0 | |
1 + α | - | 2.60 × 105 | 2.60 × 106 | |
Examined Values | Lag time, s | 17.8 | 73.2 | 547 |
tT/tL | - | 4.10 | 30.7 |
Input Values | Trapping sites density, 4.89 × 1024 m−3 | 0 | 1 | 10 | 100 | 10 | 1 | 1 |
C0, ppm | 1 | 1 | 1 | 1 | 10 | 10 | 100 | |
1 + α | - | 1.48 | 5.83 | 49.3 | 5.83 | 1.48 | 1.48 | |
1 + 3α/β | - | 4.00 | 31.0 | 301 | 4.00 | 1.3 | 1.03 | |
Occupancy | - | 0.33 | 0.33 | 0.33 | 0.83 | 0.83 | 0.98 | |
Examined Values | Lag time, s | 17.8 | 25.1 | 89.4 | 729 | 47.3 | 20.8 | 18.2 |
tT/tL | - | 1.40 | 5.01 | 41.0 | 2.65 | 1.17 | 1.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Li, L.; Cheng, L. Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve. Materials 2020, 13, 3712. https://doi.org/10.3390/ma13173712
Yang B, Li L, Cheng L. Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve. Materials. 2020; 13(17):3712. https://doi.org/10.3390/ma13173712
Chicago/Turabian StyleYang, Bangshu, Li Li, and Lin Cheng. 2020. "Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve" Materials 13, no. 17: 3712. https://doi.org/10.3390/ma13173712
APA StyleYang, B., Li, L., & Cheng, L. (2020). Numerical Evaluation on Analysis Methods of Trapping Site Density in Steels Based on Hydrogen Permeation Curve. Materials, 13(17), 3712. https://doi.org/10.3390/ma13173712