Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthetic Effluents
2.3. Industrial Effluent Characterization
2.4. Preparation of Biosorbent
2.5. Biosorption Experiments with Synthetic Effluents
2.6. Biosorption Experiments with Real Effluent
2.7. Methods
3. Results
3.1. Metal Removal from Synthetic Effluents
3.1.1. Effect of pH on Metal Ions’ Removal
3.1.2. Effect of Time on Metal Removal and Kinetic Studies
3.1.3. Effect of Zinc Concentration on Metal Ions Removal and Equilibrium Study
3.1.4. Effect of Temperature on Metal Removal and Thermodynamic Studies
3.1.5. FTIR Analysis
3.2. Metal Removal from Industrial Effluent
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Farhan, S.N.; Khadom, A.A. Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. Int. J. Ind. Chem. 2015, 6, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Osredkar, J. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, 3, 0495. [Google Scholar] [CrossRef] [Green Version]
- Basak, G.; Lakshmi, V.; Chandran, P.; Das, N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: Batch and column studies. J. Environ. Health Sci. Eng. 2014, 12, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacHado, M.D.; Janssens, S.; Soares, H.M.V.M.; Soares, E.V. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Advantages of using dead biomass. J. Appl. Microbiol. 2009, 106, 1792–1804. [Google Scholar] [CrossRef]
- Massoud, R.; Hadiani, M.R.; Hamzehlou, P.; Khosravi-Darani, K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electron. J. Biotechnol. 2019, 37, 56–60. [Google Scholar] [CrossRef]
- Bakkaloglu, I.; Butter, T.J.; Evison, L.M.; Holland, F.S.; Hancock, I.C. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Sci. Technol. 1998, 38, 269–277. [Google Scholar] [CrossRef]
- Özer, A.; Özer, D. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: Determination of biosorption heats. J. Hazard. Mater. 2003, 100, 219–229. [Google Scholar] [CrossRef]
- Zhao, M.; Duncan, J.R. Use of formaldehyde cross-linked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotechnol. Lett. 1997, 19, 953–955. [Google Scholar] [CrossRef]
- Mapolelo, M.; Torto, N. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 2004, 64, 39–47. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Grozdov, D.; Yushin, N.; Abdusamadzoda, D.; Gundorina, S.; Rodlovskaya, E.; Kristavchuk, O. Metal removal from chromium containing synthetic effluents by Saccharomyces cerevisiae. Desalin. Water Treat. 2020, 178, 254–270. [Google Scholar] [CrossRef]
- Kuznetsova, O.V.; Bychkova, Y.V.; Timerbaev, A.R. Development and Validation of a Sector-Field Inductively Coupled Plasma—Mass Spectrometry (ICP-MS) Method for Analyzing the Diagenesis-Designating Metals in Marine Sediments. Anal. Lett. 2020, 53, 563–573. [Google Scholar] [CrossRef]
- Ramesh, S.T.; Rameshbabu, N.; Gandhimathi, R.; Nidheesh, P.V.; Srikanth Kumar, M. Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite. Appl. Water Sci. 2012, 2, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Brady, D.; Duncan, J.R. Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzym. Microb. Technol. 1994, 16, 633–638. [Google Scholar] [CrossRef]
- Jianlong, W. Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 2002, 37, 847–850. [Google Scholar] [CrossRef]
- Padmavathy, V.; Vasudevan, P.; Dhingra, S.C. Biosorption of nickel(II) ions on Baker’s yeast. Process Biochem. 2003, 38, 1389–1395. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Jroundi, F.; Paytan, A.; Guerra-Tschuschke, I.; Abad, M.D.M.; González-Muñoz, M.T. Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies. Nat. Commun. 2018, 9, 1619. [Google Scholar] [CrossRef] [Green Version]
- Avery, S.V.; Tobin, J.M. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1992, 58, 3883–3889. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, J.L. Cation (K+, Mg2+, Na+, Ca2+) release in Zn (II) biosorption by Saccharomyces cerevisiae. Huanjing Kexue/Environ. Sci. 2006, 27, 2261–2267. [Google Scholar]
- do Nascimento Júnior, W.J.; da Silva, M.G.C.; Vieira, M.G.A. Competitive biosorption of Cu2+ and Ag+ ions on brown macro-algae waste: Kinetic and ion-exchange studies. Environ. Sci. Pollut. Res. 2019, 26, 23416–23428. [Google Scholar] [CrossRef]
- Zhang, Y.; Banks, C. The interaction between Cu, Pb, Zn and Ni in their biosorption onto polyurethane-immobilised Sphagnum moss. J. Chem. Technol. Biotechnol. 2005, 80, 1297–1305. [Google Scholar] [CrossRef]
- Can, C.; Jianlong, W. Removal of heavy metal ions by waste biomass of Saccharomyces cerevisiae. J. Environ. Eng. 2010, 136, 95–102. [Google Scholar] [CrossRef]
- Riahi, K.; Chaabane, S.; Thayer, B. Ben A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. [Google Scholar] [CrossRef] [Green Version]
- Rudzinski, W.; Plazinski, W. Kinetics of solute adsorption at solid/solution interfaces: A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. J. Phys. Chem. B 2006, 110, 16514–16525. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, S.; Shuaib, D.T.; Ndamitso, M.M.; Etsuyankpa, M.B.; Sumaila, A.; Mohammed, U.M.; Nasirudeen, M.B. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci. 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Solisio, C.; Lodi, A.; Soletto, D.; Converti, A. Cadmium biosorption on Spirulina platensis biomass. Bioresour. Technol. 2008, 99, 5933–5937. [Google Scholar] [CrossRef]
- Martins, R.J.E.; Vilar, V.J.P.; Boaventura, R.A.R. Kinetic modelling of cadmium and lead removal by aquatic mosses. Braz. J. Chem. Eng. 2014, 31, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M.Q. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng. 2015, 3, 775–784. [Google Scholar] [CrossRef]
- Ferreira, L.S.; Rodrigues, M.S.; de Carvalho, J.C.M.; Lodi, A.; Finocchio, E.; Perego, P.; Converti, A. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem. Eng. J. 2011, 173, 326–333. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, H.; Wang, H.; Wang, C.; Zhang, J.; Zhang, Z. Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. J. Colloid Interface Sci. 2013, 394, 183–191. [Google Scholar] [CrossRef]
- Gupta, V.K.; Al Khayat, M.; Singh, A.K.; Pal, M.K. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Anal. Chim. Acta 2009, 634, 36–43. [Google Scholar] [CrossRef]
- Amirnia, S.; Margaritis, A.; Ray, M. Adsorption of mixtures of toxic metal ions using non-viable cells of saccharomyces cerevisiae. Adsorpt. Sci. Technol. 2012, 30, 43–63. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1. [Google Scholar]
- Zinicovscaia, I.; Yushin, N.; Gundorina, S.; Demčák, Š.; Frontasyeva, M.; Kamanina, I. Biosorption of nickel from model solutions and electroplating industrial effluenusing cyanobacterium arthrospira platensis. Desalin. Water Treat. 2018, 120, 158–165. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Shvetsova, M.; Frontasyeva, M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) Platensis biomass. Int. J. Phytoremediat. 2018, 20, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Hernández Mata, K.M.; Monge Amaya, O.; Certucha Barragán, M.T.; Almendariz Tapia, F.J.; Acedo Félix, E. Metallic biosorption using yeasts in continuous systems. Int. J. Photoenergy 2013, 2013. [Google Scholar] [CrossRef]
System | Concentration, mg/L | ||||
---|---|---|---|---|---|
Zn | Cu | Ni | Sr | Ba | |
Zn(II) | 10 ± 0.1 | - | - | - | - |
Zn(II)-Sr(II)-Cu(II) | 10 ± 0.3 | 5 ± 0.03 | - | 1 ± 0.01 | - |
Zn(II)-Ni(II)-Cu(II) | 10 ± 0.2 | 2 ± 0.04 | 2 ± 0.01 | - | - |
Zn(II)-Sr(II)-Cu(II)-Ba(II) | 10 ± 0.1 | 2 ± 0.05 | 2 ± 0.03 | - | 1 ± 0.03 |
Element | Sr | Ni | Cu | Zn | Ba | pH |
---|---|---|---|---|---|---|
Concentration, µg/L | 340 | 839 | 58 | 49,843 | 35 | 6.0 |
Systems | Metal | qexp, mg/g | Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PFO | PSO | EM | |||||||||||
qe, mg/g | k1, min−1 | R2 | SSE, % | qe, mg/g | k2, g/mg·min | R2 | SSE, % | α, mg/g·min | β, g/min | R2 | |||
Zn(II) | Zn | 1.0 | 0.96 | 0.24 | 0.98 | 0.05 | 1.02 | 0.4 | 0.99 | 0.06 | 3.0 | 9.9 | 0.98 |
Zn(II)-Cu(II)-Sr(II) | Zn | 1.0 | 0.97 | 0.16 | 0.99 | 0.07 | 1.06 | 0.22 | 0.99 | 0.09 | 2.6 | 7.1 | 0.97 |
Cu | 0.31 | 0.03 | 0.98 | 0.31 | 0.007 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | |
Sr | 0.045 | 0.046 | 0.5 | 0.98 | 0.001 | 0.047 | 4.4 | 0.99 | 0.001 | n.a. | n.a. | n.a. | |
Zn(II)-Ni(II)- Cu(II) | Zn | 1.2 | 1.17 | 0.15 | 0.97 | 0.09 | 1.28 | 0.18 | 0.99 | 0.11 | 2.7 | 5.8 | 0.97 |
Ni | 0.13 | 0.14 | 0.1 | 0.97 | 0.87 | 0.15 | 1.07 | 0.97 | 1.05 | 1.3 | 42 | 0.95 | |
Cu | 0.11 | 0.14 | 51 | 0.77 | 0.01 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | |
Zn(II)-Cu(II)-Sr(II)-Ba(II) | Zn | 1.1 | 1.1 | 0.26 | 0.97 | 0.05 | 1.15 | 0.4 | 0.98 | 0.07 | 3.2 | 8.7 | 0.99 |
Cu | 0.12 | 0.11 | 0.53 | 0.93 | 0.004 | 0.12 | 4.4 | 0.96 | 0.005 | 8.3 | 91 | 0.98 | |
Sr | 0.14 | 0.13 | 0.4 | 0.99 | 0.003 | 0.14 | 7.9 | 0.99 | 0.004 | n.a. | n.a. | n.a. | |
Ba | 0.099 | 0.095 | 10.3 | 0.99 | 9.9 × 10−4 | 0.096 | 481 | 0.99 | 9.7 × 10−4 | n.a. | n.a. | n.a. |
Model | Parameters | System | |||
---|---|---|---|---|---|
Zn(II) | Zn(II)-Cu(II)-Sr(II) | Zn(II)-Ni(II)-Cu(II) | Zn(II)-Cu(II)-Sr(II)-Ba(II) | ||
Langmuir | qm, mg/g | 8.99 | 10.4 | 17 | 12 |
b, L/mg | 0.002 | 0.01 | 0.005 | 0.009 | |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | |
Freundlich | KF, mg/g | 0.43 | 0.25 | 0.17 | 0.25 |
1/n | 0.59 | 0.67 | 0.77 | 0.7 | |
R2 | 0.98 | 0.99 | 0.98 | 0.99 | |
Temkin | aT, L/g | 0.17 | 0.14 | 0.11 | 0.13 |
B, J/mol | 3.26 | 1.3 | 1.07 | 1.1 | |
R2 | 0.98 | 0.96 | 0.92 | 0.96 |
System | Metal | ∆G°, kJ/mol | ∆H°, kJ/mol | ∆S°, J/mol·K | |||
---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 323 K | ||||
Zn(II) | Zn | −10.8 | −11.4 | −11.8 | −12.2 | 2.9 | 46.5 |
Zn(II)-Cu(II)-Sr(II) | Zn | −10.6 | −11.2 | −11.8 | −12.4 | 6.4 | 58 |
Cu | −9.9 | −10.4 | −10.8 | −11.2 | 2.4 | 42 | |
Sr | −9.0 | −9.4 | −9.8 | −10.24 | 2.6 | 40 | |
Zn(II)-Ni(II)-Cu(II) | Zn | −11.1 | −11.5 | −11.9 | −12.3 | 0.2 | 39 |
Ni | −9.7 | −9.9 | −3.9 | −10.1 | −10.4 | 22 | |
Cu | −10.4 | −10.7 | −11.0 | −11.3 | −1.4 | 31 | |
Zn(II)-Cu(II)-Sr(II)-Ba(II) | Zn | −10.9 | −11.2 | −11.6 | −12.0 | 0.6 | 39 |
Sr | −10.1 | −10.3 | −10.4 | −10.6 | −5.5 | 16 | |
Cu | −9.8 | −10.2 | −10.4 | −10.6 | 1.7 | 39 | |
Ba | −10.8 | −11.0 | −11.1 | −11.3 | −6.4 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Shvetsova, M. Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae. Materials 2020, 13, 3624. https://doi.org/10.3390/ma13163624
Zinicovscaia I, Yushin N, Abdusamadzoda D, Grozdov D, Shvetsova M. Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae. Materials. 2020; 13(16):3624. https://doi.org/10.3390/ma13163624
Chicago/Turabian StyleZinicovscaia, Inga, Nikita Yushin, Daler Abdusamadzoda, Dmitrii Grozdov, and Margarita Shvetsova. 2020. "Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae" Materials 13, no. 16: 3624. https://doi.org/10.3390/ma13163624
APA StyleZinicovscaia, I., Yushin, N., Abdusamadzoda, D., Grozdov, D., & Shvetsova, M. (2020). Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae. Materials, 13(16), 3624. https://doi.org/10.3390/ma13163624